
Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Mastering Python 3 I/O
(version 2.0)

David Beazley
http://www.dabeaz.com

Presented at PyCon'2011
Atlanta, Georgia

1

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

This Tutorial

2

• Details about a very specific aspect of Python 3

• Maybe the most important part of Python 3

• Namely, the reimplemented I/O system

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Why I/O?

3

• Real programs interact with the world

• They read and write files

• They send and receive messages

• I/O is at the heart of almost everything that
Python is about (scripting, data processing,
gluing, frameworks, C extensions, etc.)

• Most tricky porting issues are I/O related

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

The I/O Issue

4

• Python 3 re-implements the entire I/O stack

• Python 3 introduces new programming idioms

• I/O handling issues can't be fixed by automatic
code conversion tools (2to3)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

The Plan

5

• We're going to take a detailed top-to-bottom
tour of the Python 3 I/O system

• Text handling, formatting, etc.

• Binary data handling

• The new I/O stack

• System interfaces

• Library design issues

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Prerequisites

6

• I assume that you are already somewhat
familiar with how I/O works in Python 2

• str vs. unicode

• print statement

• open() and file methods

• Standard library modules

• General awareness of I/O issues

• Prior experience with Python 3 not assumed

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Performance Disclosure

7

• There are some performance tests

• Execution environment for tests:

• 2.66 GHZ 4-Core MacPro, 3GB memory

• OS-X 10.6.4 (Snow Leopard)

• All Python interpreters compiled from
source using same config/compiler

• Tutorial is not meant to be a detailed
performance study so all results should be
viewed as rough estimates

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Resources

8

• I have made a few support files:

http://www.dabeaz.com/python3io/index.html

• You can try some of the examples as we go

• However, it is fine to just watch/listen and try
things on your own later

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Part 1

9

Introducing Python 3

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Syntax Changes

10

• As you know, Python 3 changes some syntax

• print is now a function print()

print("Hello World")

• Exception handling syntax changes slightly
try:
 ...
except IOError as e:
 ...

• Yes, your old code will break

added

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Many New Features

11

• Python 3 introduces many new features

• Composite string formatting

"{:10s} {:10d} {:10.2f}".format(name, shares, price)

• Dictionary comprehensions
a = {key.upper():value for key,value in d.items()}

• Function annotations
def square(x:int) -> int:
 return x*x

• Much more... but that's a different tutorial

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Changed Built-ins

12

• Many of the core built-in operations change

• Examples : range(), zip(), etc.
>>> a = [1,2,3]
>>> b = [4,5,6]
>>> c = zip(a,b)
>>> c
<zip object at 0x100452950>
>>>

• Python 3 prefers iterators/generators

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Library Reorganization

13

• The standard library has been cleaned up

• Example : Python 2

from urllib2 import urlopen
u = urlopen("http://www.python.org")

• Example : Python 3
from urllib.request import urlopen
u = urlopen("http://www.python.org")

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

2to3 Tool

14

• There is a tool (2to3) that can be used to
identify (and optionally fix) Python 2 code
that must be changed to work with Python 3

• It's a command-line tool:
bash % 2to3 myprog.py
...

• 2to3 helps, but it's not foolproof (in fact, most
of the time it doesn't quite work)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

2to3 Example

15

• Consider this Python 2 program
printlinks.py
import urllib
import sys
from HTMLParser import HTMLParser

class LinkPrinter(HTMLParser):
 def handle_starttag(self,tag,attrs):
 if tag == 'a':
 for name,value in attrs:
 if name == 'href': print value

data = urllib.urlopen(sys.argv[1]).read()
LinkPrinter().feed(data)

• It prints all links on a web page

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

2to3 Example

16

• Here's what happens if you run 2to3 on it
bash % 2to3 printlinks.py
...
--- printlinks.py (original)
+++ printlinks.py (refactored)
@@ -1,12 +1,12 @@
-import urllib
+import urllib.request, urllib.parse, urllib.error
 import sys
-from HTMLParser import HTMLParser
+from html.parser import HTMLParser

 class LinkPrinter(HTMLParser):
 def handle_starttag(self,tag,attrs):
 if tag == 'a':
 for name,value in attrs:
- if name == 'href': print value
+ if name == 'href': print(value)
...

It identifies
lines that
must be
changed

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Fixed Code

17

• Here's an example of a fixed code (after 2to3)
import urllib.request, urllib.parse, urllib.error
import sys
from html.parser import HTMLParser

class LinkPrinter(HTMLParser):
 def handle_starttag(self,tag,attrs):
 if tag == 'a':
 for name,value in attrs:
 if name == 'href': print(value)

data = urllib.request.urlopen(sys.argv[1]).read()
LinkPrinter().feed(data)

• This is syntactically correct Python 3

• But, it still doesn't work. Do you see why?

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Broken Code

18

• Run it
bash % python3 printlinks.py http://www.python.org
Traceback (most recent call last):
 File "printlinks.py", line 12, in <module>
 LinkPrinter().feed(data)
 File "/Users/beazley/Software/lib/python3.1/html/parser.py",
line 107, in feed
 self.rawdata = self.rawdata + data
TypeError: Can't convert 'bytes' object to str implicitly
bash %

Ah ha! Look at that!

• That is an I/O handling problem

• Important lesson : 2to3 didn't find it

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Actually Fixed Code

19

• This version "works"
import urllib.request, urllib.parse, urllib.error
import sys
from html.parser import HTMLParser

class LinkPrinter(HTMLParser):
 def handle_starttag(self,tag,attrs):
 if tag == 'a':
 for name,value in attrs:
 if name == 'href': print(value)

data = urllib.request.urlopen(sys.argv[1]).read()
LinkPrinter().feed(data.decode('utf-8'))

I added this one tiny bit (by hand)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Important Lessons

20

• A lot of things change in Python 3

• 2to3 only fixes really "obvious" things

• It does not fix I/O problems

• Why you should care : Real programs do I/O

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Part 2

21

Working with Text

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Making Peace with Unicode

22

• In Python 3, all text is Unicode

• All strings are Unicode

• All text-based I/O is Unicode

• You can't ignore it or live in denial

• However, you don't have to be a Unicode guru

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Text Representation

23

• Old-school programmers know about ASCII

• Each character has its own integer byte code

• Text strings are sequences of character codes

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Unicode Characters

• Unicode is the same idea only extended

• It defines a standard integer code for every
character used in all languages (except for
fictional ones such as Klingon, Elvish, etc.)

• The numeric value is known as a "code point"

• Denoted U+HHHH in polite conversation

24

ñ
ε
!
㌄

= U+00F1
= U+03B5
= U+0A87
= U+3304

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Unicode Charts

• An issue : There are a lot of code points

• Largest code point : U+10FFFF

• Code points are organized into charts

25

• Go there and you will find charts organized by
language or topic (e.g., greek, math, music, etc.)

http://www.unicode.org/charts

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Unicode Charts

26

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Using Unicode Charts

27

t = "That's a spicy Jalape\u00f1o!"

• Consult to get code points for use in literals

• In practice : It doesn't come up that often

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Unicode Escapes

28

a = "\xf1" # a = 'ñ'
b = "\u210f" # b = 'ℏ'
c = "\U0001d122" # c = '𝄢'

• There are three Unicode escapes in literals

• \xhh : Code points U+00 - U+FF

• \uhhhh : Code points U+0100 - U+FFFF

• \Uhhhhhhhh : Code points > U+10000

• Examples:

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

A repr() Caution

29

>>> a = "Jalape\xf1o"
>>> a
'Jalapeño'

• Python 3 source code is now Unicode

• Output of repr() is Unicode and doesn't use the
escape codes (characters will be rendered)

• Use ascii() to see the escape codes
>>> print(ascii(a))
'Jalape\xf1o'
>>>

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Commentary

• Don't overthink Unicode

• Unicode strings are mostly like ASCII strings
except that there is a greater range of codes

• Everything that you normally do with strings
(stripping, finding, splitting, etc.) works fine,
but is simply expanded

30

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

A Caution

31

• Unicode is just like ASCII except when it's not
>>> s = "Jalape\xf1o"
>>> t = "Jalapen\u0303o"
>>> s
'Jalapeño'
>>> t
'Jalapeño'
>>> s == t
False
>>> len(s), len(t)
(8, 9)
>>>

• Many hairy bits

• However, that's also a different tutorial

'ñ' = 'n'+'˜' (combining ˜)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Unicode Representation

• Internally, Unicode character codes are just
stored as arrays of C integers (16 or 32 bits)

32

t = "Jalapeño"

004a 0061 006c 0061 0070 0065 00f1 006f (UCS-2,16-bits)
0000004a 0000006a 0000006c 00000070 ... (UCS-4,32-bits)

• You can find out which using the sys module
>>> sys.maxunicode
65535 # 16-bits

>>> sys.maxunicode
1114111 # 32-bits

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Memory Use
• Yes, text strings in Python 3 require either 2x

or 4x as much memory to store as Python 2

• For example: Read a 10MB ASCII text file

33

data = open("bigfile.txt").read()

>>> sys.getsizeof(data) # Python 2.6
10485784

>>> sys.getsizeof(data) # Python 3.1 (UCS-2)
20971578

>>> sys.getsizeof(data) # Python 3.1 (UCS-4)
41943100

• See PEP 393 (possible change in future)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Performance Impact
• Increased memory use does impact the

performance of string operations that
involving bulk memory copies

• Slices, joins, split, replace, strip, etc.

• Example:

34

timeit("text[:-1]","text='x'*100000")

Python 2.7.1 (bytes) : 11.5 s
Python 3.2 (UCS-2) : 24.2 s
Python 3.2 (UCS-4) : 47.5 s

• Slower because more bytes are moving

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Performance Impact
• Operations that process strings character by

character often run at comparable speed

• lower, upper, find, regexs, etc.

• Example:

35

timeit("text.upper()","text='x'*1000")

Python 2.7.1 (bytes) : 37.9s (???)
Python 3.2 (UCS-2) : 6.9s
Python 3.2 (UCS-4) : 7.0s

• The same number of iterations regardless of
the size of each character

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Commentary

• Yes, unicode strings come at a cost

• Must study it if text-processing is a major
component of your application

• Keep in mind--most programs do more than
just string operations (overall performance
impact might be far less than you think)

36

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Issue : Text Encoding
• The internal representation of characters is not

the same as how characters are stored in files

37

00000048 00000065 0000006c 0000006c
0000006f 00000020 00000057 0000006f
00000072 0000006c 00000064 0000000a

Text File Hello World

File content
(ASCII bytes)

48 65 6c 6c 6f 20 57 6f 72 6c 64 0a

 Representation
inside the interpreter
(UCS-4, 32-bit ints)

read() write()

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Issue : Text Encoding
• There are also many possible char encodings

for text (especially for non-ASCII chars)

38

latin-1
"Jalapeño"

4a 61 6c 61 70 65 f1 6f

cp437 4a 61 6c 61 70 65 a4 6f

utf-8 4a 61 6c 61 70 65 c3 b1 6f

utf-16 ff fe 4a 00 61 00 6c 00 61 00
70 00 65 00 f1 00 6f 00

• Emphasize : This is only related to how text
is stored in files, not stored in memory

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Issue : Text Encoding
• Emphasize: text is always stored exactly the

same way inside the Python interpreter

39

latin-1

"Jalapeño"

4a 61 6c
61 70 65
f1 6f

utf-8

4a 61 6c
61 70 65
c3 b1 6f

4a 00 61 00 6c 00 61 00
70 00 65 00 f1 00 6f 00

Python Interpreter

Files

• It's only the encoding in files that varies

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

I/O Encoding
• All text is now encoded and decoded

• If reading text, it must be decoded from its
source format into Python strings

• If writing text, it must be encoded into some
kind of well-known output format

• This is a major difference between Python 2
and Python 3. In Python 2, you could write
programs that just ignored encoding and
read text as bytes (ASCII).

40

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Reading/Writing Text
• Built-in open() function now has an optional

encoding parameter

41

f = open("somefile.txt","rt",encoding="latin-1")

• If you omit the encoding, UTF-8 is assumed
>>> f = open("somefile.txt","rt")
>>> f.encoding
'UTF-8'
>>>

• Also, in case you're wondering, text file modes
should be specified as "rt","wt","at", etc.

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Encoding/Decoding Bytes

• Use encode() and decode() for byte strings

42

>>> s = "Jalapeño"
>>> data = s.encode('utf-8')
>>> data
b'Jalape\xc3\xb1o'

>>> data.encode('utf-8')
'Jalapeño'
>>>

• You'll need this for transmitting strings on
network connections, passing to external
systems, etc.

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Important Encodings

• If you're not doing anything with Unicode
(e.g., just processing ASCII files), there are
still three encodings you must know

• ASCII

• Latin-1

• UTF-8

• Will briefly describe each one

43

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

ASCII Encoding
• Text that is restricted to 7-bit ASCII (0-127)

• Any characters outside of that range
produce an encoding error

44

>>> f = open("output.txt","wt",encoding="ascii")
>>> f.write("Hello World\n")
12
>>> f.write("Spicy Jalapeño\n")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'ascii' codec can't encode
character '\xf1' in position 12: ordinal not in
range(128)
>>>

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Latin-1 Encoding
• Text that is restricted to 8-bit bytes (0-255)

• Byte values are left "as-is"

45

>>> f = open("output.txt","wt",encoding="latin-1")
>>> f.write("Spicy Jalapeño\n")
15
>>>

• Most closely emulates Python 2 behavior

• Also known as "iso-8859-1" encoding

• Pro tip: This is the fastest encoding for pure
8-bit text (ASCII files, etc.)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

UTF-8 Encoding
• A multibyte variable-length encoding that can

represent all Unicode characters

46

Encoding Description
0nnnnnnn ASCII (0-127)
110nnnnn 10nnnnnn U+007F-U+07FF
1110nnnn 10nnnnnn 10nnnnnn U+0800-U+FFFF
11110nnn 10nnnnnn 10nnnnnn 10nnnnnn U+10000-U+10FFFF

• Example:
ñ = 0xf1 = 11110001

 = 11000011 10110001 = 0xc3 0xb1 (UTF-8)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

UTF-8 Encoding

47

• Main feature of UTF-8 is that ASCII is
embedded within it

• If you're not working with international
characters, UTF-8 will work transparently

• Usually a safe default to use when you're not
sure (e.g., passing Unicode strings to
operating system functions, interfacing with
foreign software, etc.)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Interlude

• If migrating from Python 2, keep in mind

• Python 3 strings use multibyte integers

• Python 3 always encodes/decodes I/O

• If you don't say anything about encoding,
Python 3 assumes UTF-8

• Everything that you did before should work
just fine in Python 3 (probably)

48

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Encoding Errors
• When working with Unicode, you might

encounter encoding/decoding errors

49

>>> f = open('foo',encoding='ascii')
>>> data = f.read()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/local/lib/python3.2/encodings/
ascii.py", line 26, in decode
 return codecs.ascii_decode(input, self.errors)
[0]
UnicodeDecodeError: 'ascii' codec can't decode byte
0xc3 in position 6: ordinal not in range(128)
>>>

• This is almost always bad--must be fixed

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Fixing Encoding Errors

• Solution: Use the right encoding

50

>>> f = open('foo',encoding='utf-8')
>>> data = f.read()
>>>

• Bad Solution : Change the error handling
>>> f = open('foo',encoding='ascii',errors='ignore')
>>> data = f.read()
>>> data
'Jalapeo'
>>>

• My advice : Never use the errors argument
without a really good reason. Do it right.

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Part 3

51

Printing and Formatting

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

New Printing

• In Python 3, print() is used for text output

• Here is a mini porting guide

52

Python 2

print x,y,z
print x,y,z,
print >>f,x,y,z

Python 3

print(x,y,z)
print(x,y,z,end=' ')
print(x,y,z,file=f)

• print() has a few new tricks

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Printing Enhancements

• Picking a different item separator

53

>>> print(1,2,3,sep=':')
1:2:3
>>> print("Hello","World",sep='')
HelloWorld
>>>

• Picking a different line ending
>>> print("What?",end="!?!\n")
What?!?!
>>>

• Relatively minor, but these features were often
requested (e.g., "how do I get rid of the space?")

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Discussion : New Idioms

• In Python 2, you might have code like this

54

print ','.join([name,shares,price])

• Which of these is better in Python 3?
print(",".join([name,shares,price]))

print(name, shares, price, sep=',')

• Overall, I think I like the second one (even
though it runs a tad bit slower)

- or -

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Object Formatting

• Here is Python 2 (%)

55

s = "%10.2f" % price

• Here is Python 3 (format)
s = format(price,"10.2f")

• This is part of a whole new formatting system

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Some History

• String formatting is one of the few features
of Python 2 that can't be easily customized

• Classes can define __str__() and __repr__()

• However, they can't customize % processing

• Python 2.6/3.0 adds a __format__() special
method that addresses this in conjunction
with some new string formatting machinery

56

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

String Conversions

• Objects now have three string conversions

57

>>> x = 1/3
>>> x.__str__()
'0.333333333333'
>>> x.__repr__()
'0.3333333333333333'
>>> x.__format__("0.2f")
'0.33'
>>> x.__format__("20.2f")
' 0.33'
>>>

• You will notice that __format__() takes a
code similar to those used by the % operator

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

format() function

• format(obj, fmt) calls __format__

58

>>> x = 1/3
>>> format(x,"0.2f")
'0.33'
>>> format(x,"20.2f")
' 0.33'
>>>

• This is analogous to str() and repr()
>>> str(x)
'0.333333333333'
>>> repr(x)
'0.3333333333333333'
>>>

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Format Codes (Builtins)
• For builtins, there are standard format codes

59

Old Format New Format Description
"%d" "d" Decimal Integer
"%f" "f" Floating point
"%s" "s" String
"%e" "e" Scientific notation
"%x" "x" Hexadecimal

• Plus there are some brand new codes
 "o" Octal
 "b" Binary
 "%" Percent

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Format Examples

• Examples of simple formatting

60

>>> x = 42
>>> format(x,"x")
'2a'
>>> format(x,"b")
'101010'

>>> y = 2.71828
>>> format(y,"f")
'2.718280'
>>> format(y,"e")
'2.718280e+00'
>>> format(y,"%")
'271.828000%'

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Format Modifiers

• Field width and precision modifiers

61

[width][.precision]code

• Examples:
>>> y = 2.71828
>>> format(y,"0.2f")
'2.72'
>>> format(y,"10.4f")
' 2.7183'
>>>

• This is exactly the same convention as with
the legacy % string formatting

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Alignment Modifiers
• Alignment Modifiers

62

[<|>|^][width][.precision]code

< left align
> right align
^ center align

• Examples:
>>> y = 2.71828
>>> format(y,"<20.2f")
'2.72 '
>>> format(y,"^20.2f")
' 2.72 '
>>> format(y,">20.2f")
' 2.72'
>>>

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Fill Character

• Fill Character

63

[fill][<|>|^][width][.precision]code

• Examples:
>>> x = 42
>>> format(x,"08d")
'00000042'
>>> format(x,"032b")
'00000000000000000000000000101010'
>>> format(x,"=^32d")
'===============42==============='
>>>

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Thousands Separator

• Insert a ',' before the precision specifier

64

[fill][<|>|^][width][,][.precision]code

• Examples:
>>> x = 123456789
>>> format(x,",d")
'123,456,789'
>>> format(x,"10,.2f")
'123,456,789.00'
>>>

• Alas, the use of the ',' isn't localized

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Discussion

• As you can see, there's a lot of flexibility in
the new format method (there are other
features not shown here)

• User-defined objects can also completely
customize their formatting if they implement
__format__(self,fmt)

65

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Composite Formatting

• String .format() method formats multiple
values all at once (replacement for %)

• Some examples:

66

>>> "{name} has {n} messages".format(name="Dave",n=37)
'Dave has 37 messages'

>>> "{:10s} {:10d} {:10.2f}".format('ACME',50,91.1)
'ACME 50 91.10'

>>> "<{0}>{1}</{0}>".format('para','Hey there')
'<para>Hey there</para>'
>>>

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Composite Formatting

67

• format() method scans the string for
formatting specifiers enclosed in {} and
expands each one

• Each {} specifies what is being formatted as
well as how it should be formatted

• Tricky bit : There are two aspects to it

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

What to Format?

68

• You must specify arguments to .format()

• Positional:
"{0} has {1} messages".format("Dave",37)

• Keyword:
"{name} has {n} messages".format(name="Dave",n=37)

• In order:
"{} has {} messages".format("Dave",37)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

String Templates

69

• Template Strings
from string import Template

msg = Template("$name has $n messages")
print(msg.substitute(name="Dave",n=37)

• New String Formatting
msg = "{name} has {n} messages"
print(msg.format(name="Dave",n=37))

• Very similar

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Indexing/Attributes

70

• Cool thing : You can perform index lookups
record = {
 'name' : 'Dave',
 'n' : 37
}

'{r[name]} has {r[n]} messages'.format(r=record)

• Or attribute lookups with instances
record = Record('Dave',37)

'{r.name} has {r.n} messages'.format(r=record)

• Restriction: Can't have arbitrary expressions

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Specifying the Format

• Recall: There are three string format functions

71

str(s)
repr(s)
format(s,fmt)

• Each {item} can pick which it wants to use
{item} # Replaced by str(item)
{item!r} # Replaced by repr(item)
{item:fmt} # Replaced by format(item, fmt)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Format Examples

72

• More Examples:
>>> "{name:10s} {price:10.2f}".format(name='ACME',price=91.1)
'ACME 91.10'

>>> "{s.name:10s} {s.price:10.f}".format(s=stock)
'ACME 91.10'

>>> "{name!r},{price}".format(name="ACME",price=91.1)
"'ACME',91.1"
>>>

note repr() output here

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Other Formatting Details

73

• { and } must be escaped if part of formatting

• Use '{{ for '{'

• Use '}}' for '}'

• Example:

>>> "The value is {{{0}}}".format(42)
'The value is {42}'
>>>

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Nested Format Expansion

74

• .format() allows one level of nested lookups in
the format part of each {}

>>> s = ('ACME',50,91.10)
>>> "{0:{width}s} {2:{width}.2f}".format(*s,width=12)
'ACME 91.10'
>>>

• Probably best not to get too carried away in
the interest of code readability though

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Formatting a Mapping

75

• Variation : s.format_map(d)
>>> record = {
 'name' : 'Dave',
 'n' : 37
}
>>> "{name} has {n} messages".format_map(record)
'Dave has 37 messages'
>>>

• This is a convenience function--allows names
to come from a mapping without using **

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Commentary

76

• The new string formatting is very powerful

• The % operator will likely stay, but the new
formatting adds more flexibility

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Part 4

77

Binary Data Handling and Bytes

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Bytes and Byte Arrays

78

• Python 3 has support for "byte-strings"

• Two new types : bytes and bytearray

• They are quite different than Python 2 strings

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Defining Bytes

79

• Here's how to define byte "strings"
a = b"ACME 50 91.10" # Byte string literal
b = bytes([1,2,3,4,5]) # From a list of integers
c = bytes(10) # An array of 10 zero-bytes
d = bytes("Jalapeño","utf-8") # Encoded from string

>>> type(a)
<class 'bytes'>
>>>

• All of these define an object of type "bytes"

• However, this new bytes object is odd

• Can also create from a string of hex digits
e = bytes.fromhex("48656c6c6f")

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Bytes as Strings

80

• Bytes have standard "string" operations
>>> s = b"ACME 50 91.10"
>>> s.split()
[b'ACME', b'50', b'91.10']
>>> s.lower()
b'acme 50 91.10'
>>> s[5:7]
b'50'

• And bytes are immutable like strings
>>> s[0] = b'a'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'bytes' object does not support item assignment

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Bytes as Integers

81

• Unlike Python 2, bytes are arrays of integers
>>> s = b"ACME 50 91.10"
>>> s[0]
65
>>> s[1]
67
>>>

• Same for iteration
>>> for c in s: print(c,end=' ')
65 67 77 69 32 53 48 32 57 49 46 49 48
>>>

• Hmmmm. Curious.

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Porting Note

82

• I have encountered a lot of minor problems
with bytes in porting libraries

data = s.recv(1024)
if data[0] == '+':
 ...

data = s.recv(1024)
if data[0] == b'+': # ERROR!
 ...

data = s.recv(1024)
if data[0] == 0x2b: # CORRECT
 ...

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Porting Note

83

• Be careful with ord() (not needed)
data = s.recv(1024)
x = ord(data[0])

>>> x = 7
>>> bytes(x)
b'\x00\x00\x00\x00\x00\x00\x00'

>>> str(x).encode('ascii')
b'7'
>>>

data = s.recv(1024)
x = data[0]

• Conversion of objects into bytes

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

bytearray objects

84

• A bytearray is a mutable bytes object
>>> s = bytearray(b"ACME 50 91.10")
>>> s[:4] = b"PYTHON"
>>> s
bytearray(b"PYTHON 50 91.10")
>>> s[0] = 0x70 # Must assign integers
>>> s
bytearray(b'pYTHON 50 91.10")
>>>

• It also gives you various list operations
>>> s.append(23)
>>> s.append(45)
>>> s.extend([1,2,3,4])
>>> s
bytearray(b'ACME 50 91.10\x17-\x01\x02\x03\x04')
>>>

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

An Observation

85

• bytes and bytearray are not really meant to
mimic Python 2 string objects

• They're closer to array.array('B',...) objects
>>> import array
>>> s = array.array('B',[10,20,30,40,50])
>>> s[1]
20
>>> s[1] = 200
>>> s.append(100)
>>> s.extend([65,66,67])
>>> s
array('B', [10, 200, 30, 40, 50, 100, 65, 66, 67])
>>>

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Bytes and Strings

86

• Bytes are not meant for text processing

• In fact, if you try to use them for text, you will
run into weird problems

• Python 3 strictly separates text (unicode) and
bytes everywhere

• This is probably the most major difference
between Python 2 and 3.

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Mixing Bytes and Strings

87

• Mixed operations fail miserably
>>> s = b"ACME 50 91.10"
>>> 'ACME' in s
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Type str doesn't support the buffer API
>>>

• Huh?!?? Buffer API?

• We'll mention that later...

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Printing Bytes

88

• Printing and text-based I/O operations do not
work in a useful way with bytes
>>> s = b"ACME 50 91.10"
>>> print(s)
b'ACME 50 91.10'
>>>

Notice the leading b' and trailing
quote in the output.

• There's no way to fix this. print() should only
be used for outputting text (unicode)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Formatting Bytes

89

• Bytes do not support operations related to
formatted output (%, .format)
>>> s = b"%0.2f" % 3.14159
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for %: 'bytes' and
'float'
>>>

• So, just forget about using bytes for any kind of
useful text output, printing, etc.

• No, seriously.

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Passing Bytes as Strings

90

• Many library functions that work with "text"
do not accept byte objects at all
>>> time.strptime(b"2010-02-17","%Y-%m-%d")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/Users/beazley/Software/lib/python3.1/
_strptime.py", line 461, in _strptime_time
 return _strptime(data_string, format)[0]
 File "/Users/beazley/Software/lib/python3.1/
_strptime.py", line 301, in _strptime
 raise TypeError(msg.format(index, type(arg)))
TypeError: strptime() argument 0 must be str, not <class
'bytes'>
>>>

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Commentary

91

• Why am I focusing on this "bytes as text" issue?

• If you are writing scripts that do simple ASCII
text processing, you might be inclined to use
bytes as a way to avoid the overhead of Unicode

• You might think that bytes are exactly the same
as the familiar Python 2 string object

• This is wrong. Bytes are not text. Using bytes as
text will lead to convoluted non-idiomatic code

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

How to Use Bytes

92

• Bytes are better suited for low-level I/O
handling (message passing, distributed
computing, embedded systems, etc.)

• I will show some examples that illustrate

• A complaint: documentation (online and
books) is somewhat thin on explaining
practical uses of bytes and bytearray objects

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Example : Reassembly

93

• In Python 2, you may know that string
concatenation leads to bad performance

msg = b""
while True:
 chunk = s.recv(BUFSIZE)
 if not chunk:
 break
 msg += chunk

• Here's the common workaround (hacky)
chunks = []
while True:
 chunk = s.recv(BUFSIZE)
 if not chunk:
 break
 chunks.append(chunk)
msg = b"".join(chunks)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Example : Reassembly

94

• Here's a new approach in Python 3
msg = bytearray()
while True:
 chunk = s.recv(BUFSIZE)
 if not chunk:
 break
 msg.extend(chunk)

• You treat the bytearray as a list and just
append/extend new data at the end as you go

• I like it. It's clean and intuitive.

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Example: Reassembly

95

• The performance is good too

• Concat 1024 32-byte chunks together (10000x)

Concatenation : 18.49s
Joining : 1.55s
Extending a bytearray : 1.78s

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Example: Record Packing

96

• Suppose you wanted to use the struct module
to incrementally pack a large binary message
objs = [...] # List of tuples to pack
msg = bytearray() # Empty message

First pack the number of objects
msg.extend(struct.pack("<I",len(objs)))

Incrementally pack each object
for x in objs:
 msg.extend(struct.pack(fmt, *x))

Do something with the message
f.write(msg)

• I like this as well.

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Example : Calculations

97

• Run a byte array through an XOR-cipher
>>> s = b"Hello World"
>>> t = bytes(x^42 for x in s)
>>> t
b'bOFFE\n}EXFN'
>>> bytes(x^42 for x in t)
b'Hello World'
>>>

• Compute and append a LRC checksum to a msg
Compute the checksum and append at the end
chk = 0
for n in msg:
 chk ^= n
msg.append(chk)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Commentary

98

• I like the new bytearray object

• Many potential uses in building low-level
infrastructure for networking, distributed
computing, messaging, embedded systems, etc.

• May make much of that code cleaner, faster, and
more memory efficient

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Related : Buffers

99

• bytearray() is an example of a "buffer"

• buffer : A contiguous region of memory (e.g.,
allocated like a C/C++ array)

• There are many other examples:
a = array.array("i", [1,2,3,4,5])
b = numpy.array([1,2,3,4,5])
c = ctypes.ARRAY(ctypes.c_int,5)(1,2,3,4,5)

• Under the covers, they're all similar and often
interchangeable with bytes (especially for I/O)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Advanced : Memory Views

100

• memoryview()
>>> a = bytearray(b'Hello World')
>>> b = memoryview(a)
>>> b
<memory at 0x1007014d0>
>>> b[-5:] = b'There'
>>> a
bytearray(b'Hello There')
>>>

• It's essentially an overlay over a buffer

• It's very low-level and its use seems tricky

• I would probably avoid it

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Part 5

101

The io module

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

I/O Implementation

102

• I/O in Python 2 is largely based on C I/O

• For example, the "file" object is just a thin layer
over a C "FILE *" object

• Python 3 changes this

• In fact, Python 3 has a complete ground-up
reimplementation of the whole I/O system

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

The open() function

103

• You still use open() as you did before

• However, the result of calling open() varies
depending on the file mode and buffering

• Carefully study the output of this:

>>> open("foo.txt","rt")
<_io.TextIOWrapper name='foo.txt' encoding='UTF-8'>
>>> open("foo.txt","rb")
<_io.BufferedReader name='foo.txt'>
>>> open("foo.txt","rb",buffering=0)
<_io.FileIO name='foo.txt' mode='rb'>
>>>

Notice how
you're getting a
different kind of

result here

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

The io module

104

• The core of the I/O system is implemented in
the io library module

• It consists of a collection of different I/O classes
FileIO
BufferedReader
BufferedWriter
BufferedRWPair
BufferedRandom
TextIOWrapper
BytesIO
StringIO

• Each class implements a different kind of I/O

• The classes get layered to add features

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Layering Illustrated

105

• Here's the result of opening a "text" file

open("foo.txt","rt")

TextIOWrapper

BufferedReader

FileIO

• Keep in mind: This is very different from Python 2

• Inspired by Java? (don't know, maybe)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

FileIO Objects

106

• An object representing raw unbuffered binary I/O

• FileIO(name [, mode [, closefd])

name : Filename or integer fd
mode : File mode ('r', 'w', 'a', 'r+',etc.)
closefd : Flag that controls whether close() called

• Under the covers, a FileIO object is directly
layered on top of operating system functions
such as read(), write()

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

FileIO Usage

107

• FileIO replaces os module functions

• Example : Python 2 (os module)
fd = os.open("somefile",os.O_RDONLY)
data = os.read(fd,4096)
os.lseek(fd,16384,os.SEEK_SET)
...

• Example : Python 3 (FileIO object)
f = io.FileIO("somefile","r")
data = f.read(4096)
f.seek(16384,os.SEEK_SET)
...

• It's a low-level file with a file-like interface (nice)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Direct System I/O

108

• FileIO directly exposes the behavior of low-level
system calls on file descriptors

• This includes:

• Partial read/writes

• Returning system error codes

• Blocking/nonblocking I/O handling

• Systems programmers want this

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

A Subtle Feature

109

• All files in Python 3 are opened in binary mode
at the operating system level

• For Unix : Doesn't matter

• For Windows : It's subtle, but handling of
newlines (and carriage returns) for text is now
done by Python, not the operating system

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Commentary

110

• FileIO is the most critical object in the I/O stack

• Everything else depends on it

• Nothing quite like it in Python 2

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

BufferedIO Objects

111

• The following classes implement buffered I/O
BufferedReader(f [, buffer_size])
BufferedWriter(f [, buffer_size [, max_buffer_size]])
BufferedRWPair(f_read, f_write
 [, buffer_size [, max_buffer_size]])
BufferedRandom(f [, buffer_size [, max_buffer_size]])

• Each of these classes is layered over a supplied
raw FileIO object (f)
f = io.FileIO("foo.txt") # Open the file (raw I/O)
g = io.BufferedReader(f) # Put buffering around it

f = io.BufferedReader(io.FileIO("foo.txt")) # Alternative

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Buffering Behavior

112

• Buffering is controlled by two parameters
(buffer_size and max_buffer_size)

• buffer_size is amount of data that can be stored
before it's flushed to the I/O device

• max_buffer_size is the total amount of data that
can be stored before blocking (default is twice
buffer_size).

• Allows more data to be accepted while previous
I/O operation flush completes (useful for non-
blocking I/O applications)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Buffered Operations

113

• Buffered readers implement these methods
f.peek([n]) # Return up to n bytes of data without
 # advancing the file pointer

f.read([n]) # Return n bytes of data as bytes

f.read1([n]) # Read up to n bytes using a single
 # read() system call

• Other ops (seek, tell, close, etc.) work as well

• Buffered writers implement these methods
f.write(bytes) # Write bytes
f.flush() # Flush output buffers

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

File-Like Caution

114

• If you are making file-like objects, they may need
the new read1() method
f.read1([n]) # Read up to n bytes using a single
 # read() system call

• Minimally alias it to read()

• If you leave it off, the program will crash if other
code ever tries to access it

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

TextIOWrapper

115

• The object that implements text-based I/O

TextIOWrapper(buffered [, encoding [, errors
 [, newline [, line_buffering]]]])

buffered - A buffered file object
encoding - Text encoding (e.g., 'utf-8')
errors - Error handling policy (e.g. 'strict')
newline - '', '\n', '\r', '\r\n', or None
line_buffering - Flush output after each line (False)

• It is layered on a buffered I/O stream
f = io.FileIO("foo.txt") # Open the file (raw I/O)
g = io.BufferedReader(f) # Put buffering around it
h = io.TextIOWrapper(g,"utf-8") # Text I/O wrapper

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Text Line Handling

116

• By default, files are opened in "universal" newline
mode where all newlines are mapped to '\n'
>>> open("foo","r").read()
'Hello\nWorld\n'

• Use newline='' to return lines unmodified
>>> open("foo","r",newline='').read()
'Hello\r\nWorld\r\n'

• For writing, os.linesep is used as the newline
unless otherwise specified with newlines parm
>>> f = open("foo","w",newline='\r\n')
>>> f.write('Hello\nWorld\n')

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

TextIOWrapper and codecs

117

• Python 2 used the codecs module for unicode

• TextIOWrapper is a completely new object,
written almost entirely in C

• It kills codecs.open() in performance
for line in open("biglog.txt",encoding="utf-8"):
 pass

f = codecs.open("biglog.txt",encoding="utf-8")
for line in f:
 pass

53.3 sec

3.8 sec

Note: both tests performed using Python-3.1.1

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Putting it All Together

118

• As a user, you don't have to worry too much
about how the different parts of the I/O system
are put together (all of the different classes)

• The built-in open() function constructs the
proper set of IO objects depending on the
supplied parameters

• Power users might use the io module directly
for more precise control over special cases

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

open() Revisited

119

• The type of IO object returned depends on the
supplied mode and buffering parameters

mode buffering Result

any binary 0 FileIO
"rb" != 0 BufferedReader
"wb","ab" != 0 BufferedWriter
"rb+","wb+","ab+" != 0 BufferedRandom
any text != 0 TextIOWrapper

• Note: Certain combinations are illegal and will
produce an exception (e.g., unbuffered text)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Unwinding the I/O Stack

120

• Sometimes you might need to unwind layers

• Scenario : You were given an open text-mode
file, but want to use it in binary mode

open("foo.txt","rt")

TextIOWrapper

BufferedReader

FileIO

.buffer

.raw

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Unwinding Example

121

• Writing binary data on sys.stdout

>>> import sys
>>> sys.stdout.write(b"Hello World\n")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: must be str, not bytes

>>> sys.stdout.buffer.write(b"Hello World\n")
Hello World
12
>>>

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Layering Caution

122

• The layering of I/O is buggy with file-like objects
>>> import io
>>> from urllib.request import urlopen
>>> u = io.TextIOWrapper(
 urlopen("http://www.python.org"),
 encoding='latin1')
>>> text = u.read()

>>> u = io.TextIOWrapper(
 urlopen("http://www.python.org"),
 encoding='latin1')
>>> line = u.readline()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'HTTPResponse' object has no
attribute 'read1'

• Will eventually sort itself out

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

I/O Performance

123

• Question : How does new I/O perform?

• Will compare:

• Python 2.7.1 built-in open()

• Python 3.2 built-in open()

• Note: This is not exactly a fair test--the Python 3
open() has to decode Unicode text

• However, it's realistic, because most programmers
use open() without thinking about it

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

I/O Performance

124

• Read a 100 Mbyte text file all at once
data = open("big.txt").read()

Python 2.7.1 : 0.14s
Python 3.2 (UCS-2, UTF-8) : 0.90s
Python 3.2 (UCS-4, UTF-8) : 1.56s

• Read a 100 Mbyte binary file all at once
data = open("big.bin","rb").read()

Python 2.7.1 : 0.16s
Python 3.2 (binary) : 0.14s

(Not a significant
difference)

Yes, you get
overhead due to

text decoding

• Note: tests conducted with warm disk cache

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

I/O Performance

125

• Write a 100 Mbyte text file all at once
open("foo.txt","wt").write(text)

Python 2.7.1 : 1.73s
Python 3.2 (UCS-2, UTF-8) : 1.85s
Python 3.2 (UCS-4, UTF-8) : 1.85s

• Write a 100 Mbyte binary file all at once
data = open("big.bin","wb").write(data)

Python 2.7.1 : 1.79s
Python 3.2 (binary) : 1.80s

• Note: tests conducted with warm disk cache

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

I/O Performance

126

• Iterate over 730000 lines of a big log file (text)
for line in open("biglog.txt"):
 pass

Python 2.7.1 : 0.25s
Python 3.2 (UCS-2, UTF-8) : 0.57s
Python 3.2 (UCS-4, UTF-8) : 0.82s

• Iterate over 730000 lines of a log file (binary)

Python 2.7.1 : 0.25s
Python 3.2 (binary) : 0.29s

for line in open("biglog.txt","rb"):
 pass

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

I/O Performance

127

• Write 730000 lines log data (text)
open("biglog.txt","wt").writelines(lines)

Python 2.7.1 : 1.2s
Python 3.2 (UCS-2, UTF-8) : 1.2s
Python 3.2 (UCS-4, UTF-8) : 1.2s

• Write 730000 lines of log data (binary)

Python 2.7.1 : 1.2s
Python 3.2 (binary) : 1.2s

open("biglog.txt","wb").writelines(binlines)

(10 sample averages, not an
observation difference)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Commentary

128

• For binary, the Python 3 I/O system is
comparable to Python 2 in performance

• Text based I/O has an unavoidable penalty

• Extra decoding (UTF-8)

• An extra memory copy

• You might be able to minimize the decoding
penalty by specifying 'latin-1' (fastest)

• The memory copy can't be eliminated

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Commentary

129

• Reading/writing always involves bytes

"Hello World" -> 48 65 6c 6c 6f 20 57 6f 72 6c 64

• To get it to Unicode, it has to be copied to
multibyte integers (no workaround)

48 65 6c 6c 6f 20 57 6f 72 6c 64

0048 0065 006c 006c 006f 0020 0057 006f 0072 006c 0064

Unicode conversion

• The only way to avoid this is to never convert
bytes into a text string (not always practical)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Advice

130

• Heed the advice of the optimization gods---ask
yourself if it's really worth worrying about
(premature optimization as the root of all evil)

• No seriously... does it matter for your app?

• If you are processing huge (no, gigantic) amounts
of 8-bit text (ASCII, Latin-1, UTF-8, etc.) and I/O
has been determined to be the bottleneck, there
is one approach to optimization that might work

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Text Optimization

131

• Perform all I/O in binary/bytes and defer
Unicode conversion to the last moment

• If you're filtering or discarding huge parts of the
text, you might get a big win

• Example : Log file parsing

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Example

132

• Find all URLs that 404 in an Apache log

140.180.132.213 - - [...] "GET /ply/ply.html HTTP/1.1" 200 97238
140.180.132.213 - - [...] "GET /favicon.ico HTTP/1.1" 404 133

• Processing everything as text
error_404_urls = set()
for line in open("biglog.txt"):
 fields = line.split()
 if fields[-2] == '404':
 error_404_urls.add(fields[-4])

for name in error_404_urls:
 print(name) Python 2.71 : 1.22s

Python 3.2 (UCS-2) : 1.73s
Python 3.2 (UCS-4) : 2.00s

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Example Optimization

133

• Deferred text conversion
error_404_urls = set()
for line in open("biglog.txt","rb"):
 fields = line.split()
 if fields[-2] == b'404':
 error_404_urls.add(fields[-4])
error_404_urls = {n.decode('latin-1')
 for n in error_404_urls }

for name in error_404_urls:
 print(name)

Python 3.2 (UCS-2) : 1.29s (down from 1.73s)
Python 3.2 (UCS-4) : 1.28s (down from 2.00s)

Unicode conversion here

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Part 6

134

System Interfaces

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

System Interfaces

135

• Major parts of the Python library are related to
low-level systems programming, sysadmin, etc.

• os, os.path, glob, subprocess, socket, etc.

• Unfortunately, there are some really sneaky
aspects of using these modules with Python 3

• It concerns the Unicode/Bytes separation

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

A Problem

136

• To carry out system operations, the Python
interpreter executes standard C system calls

• For example, POSIX calls on Unix

int fd = open(filename, O_RDONLY);

• However, names used in system interfaces (e.g.,
filenames, program names, etc.) are specified as
byte strings (char *)

• Bytes also used for environment variables and
command line options

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Question

137

• How does Python 3 integrate strings (Unicode)
with byte-oriented system interfaces?

• Examples:

• Filenames

• Command line arguments (sys.argv)

• Environment variables (os.environ)

• Note: You should care about this if you use
Python for various system tasks

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Name Encoding

138

• Standard practice is for Python 3 to UTF-8
encode all names passed to system calls

f = open("somefile.txt","wt")

open("somefile.txt",O_WRONLY)

encode('utf-8')

Python :

C/syscall :

• This is usually a safe bet

• ASCII is a subset and UTF-8 is an extension that
most operating systems support

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Arguments & Environ

139

• Similarly, Python decodes arguments and
environment variables using UTF-8

TERM=xterm-color
SHELL=/bin/bash
USER=beazley
PATH=/usr/bin:/bin:/usr/sbin:...
LANG=en_US.UTF-8
HOME=/Users/beazley
LOGNAME=beazley
...

decode('utf-8')

Python 3:

bash % python foo.py arg1 arg2 ... sys.argv

os.environ

decode('utf-8')

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Lurking Danger

140

• Be aware that some systems accept, but do not
strictly enforce UTF-8 encoding of names

• This is extremely subtle, but it means that names
used in system interfaces don't necessarily
match the encoding that Python 3 wants

• Will show a pathological example to illustrate

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Example : A Bad Filename

141

• Start Python 2 on Linux and create a file using
the open() function like this:

>>> f = open("jalape\xf1o.txt","w")
>>> f.write("Bwahahahaha!\n")
>>> f.close()

• This creates a file with a single non-ASCII byte
(\xf1, 'ñ') embedded in the filename

• The filename is not UTF-8, but it still "works"

• Question: What happens if you try to do
something with that file in Python 3?

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Example : A Bad Filename

142

• Python 3 won't be able to open the file
>>> f = open("jalape\xf1o.txt")
Traceback (most recent call last):
...
IOError: [Errno 2] No such file or directory: 'jalapeño.txt'
>>>

• This is caused by an encoding mismatch
"jalape\xf1o.txt"

b"jalape\xc3\xb1o.txt"

UTF-8

open()

Fails! b"jalape\xf1o.txt"

It fails because this is
the actual filename

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Example : A Bad Filename

143

• Bad filenames cause weird behavior elsewhere

• Directory listings

• Filename globbing

• Example : What happens if a non UTF-8 name
shows up in a directory listing?

• In early versions of Python 3, such names were
silently discarded (made invisible). Yikes!

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Names as Bytes

144

• You can specify filenames using byte strings
instead of strings as a workaround

>>> f = open(b"jalape\xf1o.txt")
>>>

>>> files = glob.glob(b"*.txt")
>>> files
[b'jalape\xf1o.txt', b'spam.txt']
>>>

Notice bytes

• This turns off the UTF-8 encoding and returns
all results as bytes

• Note: Not obvious and a little hacky

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Surrogate Encoding

145

• In Python 3.1, non-decodable (bad) characters in
filenames and other system interfaces are
translated using "surrogate encoding" as
described in PEP 383.

• This is a Python-specific "trick" for getting
characters that don't decode as UTF-8 to pass
through system calls in a way where they still
work correctly

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Surrogate Encoding

146

• Idea : Any non-decodable bytes in the range
0x80-0xff are translated to Unicode characters
U+DC80-U+DCFF

• Example:
b"jalape\xf1o.txt"

"jalape\udcf1o.txt"
surrogate encoding

• Similarly, Unicode characters U+DC80-U+DCFF
are translated back into bytes 0x80-0xff when
presented to system interfaces

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Surrogate Encoding

147

• You will see this used in various library functions
and it works for functions like open()

• Example:
>>> glob.glob("*.txt")
['jalape\udcf1o.txt', 'spam.txt']

>>> f = open("jalape\udcf1o.txt")
>>>

notice the odd unicode character

• If you ever see a \udcxx character, it means that
a non-decodable byte was passed through a
system interface

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Surrogate Encoding

148

• Question : Does this break part of Unicode?

• Answer : Unsure

• It uses a range of Unicode dedicated for a
feature known as "surrogate pairs". A pair of
Unicode characters encoded like this

(U+D800-U+DBFF, U+DC00-U+DFFF)

• In Unicode, you would never see a U+DCxx
character appearing all on its own

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Caution : Printing

149

• Non-decodable bytes will break print()
>>> files = glob.glob("*.txt")
>>> files
['jalape\udcf1o.txt', 'spam.txt']
>>> for name in files:
... print(name)
...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'utf-8' codec can't encode character
'\udcf1' in position 6: surrogates not allowed
>>>

• Arg! If you're using Python for file manipulation
or system administration you need to be careful

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Implementation

150

• Surrogate encoding is implemented as an error
handler for encode() and decode()

• Example:
>>> s = b"jalape\xf1o.txt"
>>> t = s.decode('utf-8','surrogateescape')
>>> t
'jalape\udcf1o.txt'

>>> t.encode('utf-8','surrogateescape')
b'jalape\xf1o.txt'
>>>

• If you are porting code that deals with system
interfaces, you might need to do this

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Commentary

151

• This handling of Unicode in system interfaces is
also of interest to C/C++ extensions

• What happens if a C/C++ function returns an
improperly encoded byte string?

• What happens in ctypes? Swig?

• Seems unexplored (too obscure? new?)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Part 7

152

Library Design Issues

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Text, Bytes, and Libraries

153

• In Python 2, you could be sloppy about the
distinction between text and bytes in many
library functions

• Networking modules

• Data handling modules

• In Python 3, you must be very precise

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Example : Socket Sends

154

• Here's a "broken" function

• Reason it's broken: sockets only work with
binary I/O (bytes, bytearrays, etc.)

• Passing text just isn't allowed

def send_response(s,code,msg):
 s.sendall("HTTP/1.0 %s %s\r\n" % (code,msg))

send_response(s,"200","OK")

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Example : Socket Sends

155

• In Python 3, you must explicitly encode text

def send_response(s,code,msg):
 resp = "HTTP/1.0 %s %s\r\n" % (code,msg)
 s.sendall(resp.encode('ascii'))

send_response(s,"200","OK")

• Rules of thumb:

• All outgoing text must be encoded

• All incoming text must be decoded

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Discussion

156

• Where do you perform the encoding?

• At the point of data transmission?

• Or do you make users specify bytes elsewhere?
def send_response(s,code,msg):
 resp = b"HTTP/1.0 " + code + b" " + msg + b"\r\n"
 s.sendall(resp)

send_response(s,b"200",b"OK")

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Discussion

157

• Do you write code that accepts str/bytes?
def send_response(s,code,msg):
 if isinstance(code,str):
 code = code.encode('ascii')
 if isinstance(msg,str):
 msg = msg.encode('ascii')
 resp = b"HTTP/1.0 " + code + b" " + msg + b"\r\n"
 s.sendall(resp)

send_response(s,b"200",b"OK") # Works
send_response(s,"200","OK") # Also Works

• If you do this, does it violate Python 3's strict
separation of bytes/unicode?

• I have no answer

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

More Discussion

158

• What about C extensions?
void send_response(int fd, const char *msg) {
 ...
}

• Is char * bytes?

• Is char * text? (Unicode)

• Is it both with implicit encoding?

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Muddled Text

159

• Is this the right behavior? (notice result)
>>> data = b'Hello World'
>>> import base64
>>> base64.b64encode(data)
b'SGVsbG8gV29ybGQ='
>>>

should this be bytes?

• It gets tricky once you start embedding all of
these things into other data

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Part 8

160

Porting to Python 3
(and final words)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Big Picture

161

• I/O handling in Python 3 is so much more than
minor changes to Python syntax

• It's a top-to-bottom redesign of the entire I/O
stack that has new idioms and new features

• Question : If you're porting from Python 2, do
you want to stick with Python 2 idioms or do
you take full advantage of Python 3 features?

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Python 2 Backport

162

• Almost everything discussed in this tutorial has
been back-ported to Python 2

• So, you can actually use most of the core
Python 3 I/O idioms in your Python 2 code now

• Caveat : try to use the most recent version of
Python 2 possible (e.g., Python 2.7)

• There is active development and bug fixes

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Porting Tips

163

• Make sure you very clearly separate bytes and
unicode in your application

• Use the byte literal syntax : b'bytes'

• Use bytearray() for binary data handling

• Use new text formatting idioms (.format, etc.)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Porting Tips

164

• Consider using a mockup of the new bytes type
for differences in indexing/iteration
class _b(str):
 def __getitem__(self,index):
 return ord(str.__getitem__(self,index))

• Example:
>>> s = _b("Hello World")
>>> s[0]
72
>>> for c in s: print c,
...
72 101 108 108 111 32 87 111 114 108 100

• Put it around all use of bytes and make sure
your code still works afterwards (in Python 2)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Porting Tips

165

• StringIO has been split into two classes

from io import StringIO, BytesIO

f = StringIO(text) # StringIO for text only (unicode)
g = BytesIO(data) # BytesIO for bytes only>>>

• Be very careful with the use of StringIO in unit
tests (where I have encountered most problems)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Porting Tips

166

• When you're ready for it, switch to the new
open() and print() functions

from __future__ import print_function
from io import open

• This switches to the new IO stack

• If you application still works correctly, you're
well on your way to Python 3 compatibility

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Porting Tips

167

• Tests, tests, tests, tests, tests, tests...

• Don't even remotely consider the idea of
Python 2 to Python 3 port without unit tests

• I/O handling is only part of the process

• You want tests for other issues (changed
semantics of builtins, etc.)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Modernizing Python 2

168

• Even if Python 3 is not yet an option for other
reasons, you can take advantage of its I/O
handling idioms now

• I think there's a lot of neat new things

• Can benefit Python 2 programs in terms of
more elegant programming, improved efficiency

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

That's All Folks!

169

• Hope you learned at least one new thing

• Please feel free to contact me

http://www.dabeaz.com

• Also, I teach Python classes (shameless plug)

