
USENIX Association

Proceedings of the
2001 USENIX Annual
Technical Conference

Boston, Massachusetts, USA
June 25–30, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

An Embedded Error Recovery and Debugging Mechanism for Scripting
Language Extensions

David M. Beazley
Department of Computer Science

University of Chicago
Chicago, Illinois 60637

beazley@cs.uchicago.edu

Abstract

In recent years, scripting languages such as Perl,
Python, and Tcl have become popular development tools
for the creation of sophisticated application software.
One of the most useful features of these languages is
their ability to easily interact with compiled languages
such as C and C++. Although this mixed language ap-
proach has many benefits, one of the greatest drawbacks
is the complexity of debugging that results from using
interpreted and compiled code in the same application.
In part, this is due to the fact that scripting language
interpreters are unable to recover from catastrophic er-
rors in compiled extension code. Moreover, traditional
C/C++ debuggers do not provide a satisfactory degree
of integration with interpreted languages. This paper
describes an experimental system in which fatal exten-
sion errors such as segmentation faults, bus errors, and
failed assertions are handled as scripting language ex-
ceptions. This system, which has been implemented as
a general purpose shared library, requires no modifica-
tions to the target scripting language, introduces no per-
formance penalty, and simplifies the debugging of mixed
interpreted-compiled application software.

1 Introduction

Slightly more than ten years have passed since John
Ousterhout introduced the Tcl scripting language at the
1990 USENIX technical conference [1]. Since then,
scripting languages have been gaining in popularity as
evidenced by the wide-spread use of systems such as
Tcl, Perl, Python, Guile, PHP, and Ruby [1, 2, 3, 4, 5, 6].

In part, the success of modern scripting languages is
due to their ability to be easily integrated with software
written in compiled languages such as C, C++, and For-
tran. In addition, a wide variety of wrapper generation
tools can be used to automatically produce bindings be-
tween existing code and a variety of scripting language

environments [7, 8, 9, 10, 11, 12, 13, 14, 15]. As a result,
a large number of programmers are now using scripting
languages to control complex C/C++ programs or as a
tool for re-engineering legacy software. This approach is
attractive because it allows programmers to benefit from
the flexibility and rapid development of scripting while
retaining the best features of compiled code such as high
performance [16].

A critical aspect of scripting-compiled code integra-
tion is the way in which it departs from traditional
C/C++ development and shell scripting. Rather than
building stand-alone applications that run as separate
processes, extension programming encourages a style
of programming in which components are tightly inte-
grated within an interpreter that is responsible for high-
level control. Because of this, scripted software tends
to rely heavily upon shared libraries, dynamic loading,
scripts, and third-party extensions. In this sense, one
might argue that the benefits of scripting are achieved at
the expense of creating a more complicated development
environment.

A consequence of this complexity is an increased de-
gree of difficulty associated with debugging programs
that utilize multiple languages, dynamically loadable
modules, and a sophisticated runtime environment. To
address this problem, this paper describes an experimen-
tal system known as WAD (Wrapped Application De-
bugger) in which an embedded error reporting and de-
bugging mechanism is added to common scripting lan-
guages. This system converts catastrophic signals such
as segmentation faults and failed assertions to exceptions
that can be handled by the scripting language interpreter.
In doing so, it provides more seamless integration be-
tween error handling in scripting language interpreters
and compiled extensions.

2 The Debugging Problem

Normally, a programming error in a scripted applica-
tion results in an exception that describes the problem
and the context in which it occurred. For example, an
error in a Python script might produce a traceback simi-
lar to the following:

% python foo.py
Traceback (innermost last):
File "foo.py", line 11, in ?
foo()

File "foo.py", line 8, in foo
bar()

File "foo.py", line 5, in bar
spam()

File "foo.py", line 2, in spam
doh()

NameError: doh

In this case, a programmer might be able to apply a
fix simply based on information in the traceback. Al-
ternatively, if the problem is more complicated, a script-
level debugger can be used to provide more information.
In contrast, a failure in compiled extension code might
produce the following result:

% python foo.py
Segmentation Fault (core dumped)

In this case, the user has no idea of what has happened
other than it appears to be “very bad.” Furthermore,
script-level debuggers are unable to identify the problem
since they also crash when the error occurs (they run in
the same process as the interpreter). This means that the
only way for a user to narrow the source of the problem
within a script is through trial-and-error techniques such
as inserting print statements, commenting out sections of
scripts, or having a deep intuition of the underlying im-
plementation. Obviously, none of these techniques are
particularly elegant.

An alternative approach is to run the application un-
der the control of a traditional debugger such as gdb
[17]. Although this provides some information about
the error, the debugger mostly provides detailed infor-
mation about the internal implementation of the script-
ing language interpreter instead of the script-level code
that was running at the time of the error. Needless to
say, this information isn’t very useful to most program-
mers. A related problem is that the structure of a scripted
application tends to be much more complex than a tra-
ditional stand-alone program. As a result, a user may
not have a good sense of how to actually attach an exter-
nal debugger to their script. In addition, execution may
occur within a complex run-time environment involving

events, threads, and network connections. Because of
this, it can be difficult for the user to reproduce and iden-
tify certain types of catastrophic errors if they depend
on timing or unusual event sequences. Finally, this ap-
proach requires a programmer to have a C development
environment installed on their machine. Unfortunately,
this may not hold in practice. This is because script-
ing languages are often used to provide programmability
to applications where end-users write scripts, but do not
write low-level C code.

Even if a traditional debugger such as gdb were mod-
ified to provide better integration with scripting lan-
guages, it is not clear that this would be the most nat-
ural solution to the problem. For one, having to run a
separate debugging process to debug extension code is
unnatural when no such requirement exists for scripts.
Moreover, even if such a debugger existed, an inexperi-
enced user may not have the expertise or inclination to
use it. Finally, obscure fatal errors may occur long after
an application has been deployed. Unless the debugger
is distributed along with the application in some manner,
it will be extraordinary difficult to obtain useful diagnos-
tics when such errors occur.

The current state of the art in extension debugging is
to simply add as much error checking as possible to ex-
tension modules. This is never a bad thing to do, but in
practice it’s usually not enough to eliminate every pos-
sible problem. For one, scripting languages are some-
times used to control hundreds of thousands to millions
of lines of compiled code. In this case, it is improbable
that a programmer will foresee every conceivable error.
In addition, scripting languages are often used to put new
user interfaces on legacy software. In this case, script-
ing may introduce new modes of execution that cause a
formerly “bug-free” application to fail in an unexpected
manner. Finally, certain types of errors such as floating-
point exceptions can be particularly difficult to eliminate
because they might be generated algorithmically (e.g., as
the result of instability in a numerical method). There-
fore, even if a programmer has worked hard to eliminate
crashes, there is usually a small probability that an ap-
plication may fail under unusual circumstances.

3 Embedded Error Reporting

Rather than modifying an existing debugger to sup-
port scripting languages, an alternative approach is to
add a more powerful error handling and reporting mech-
anism to the scripting language interpreter. We have im-
plemented this approach in the form of an experimental
system known as WAD. WAD is packaged as dynami-
cally loadable shared library that can either be loaded as
a scripting language extension module or linked to ex-

% python foo.py
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "foo.py", line 16, in ?
foo()

File "foo.py", line 13, in foo
bar()

File "foo.py", line 10, in bar
spam()

File "foo.py", line 7, in spam
doh.doh(a,b,c)

SegFault: [C stack trace]

#2 0x00027774 in call_builtin(func=0x1c74f0,arg=0x1a1ccc,kw=0x0) in ’ceval.c’,line 2650
#1 0xff083544 in _wrap_doh(self=0x0,args=0x1a1ccc) in ’foo_wrap.c’,line 745
#0 0xfe7e0568 in doh(a=3,b=4,c=0x0) in ’foo.c’,line 28

/u0/beazley/Projects/WAD/Python/foo.c, line 28

int doh(int a, int b, int *c) {
=> *c = a + b;

return *c;
}

Figure 1: Cross language traceback generated by WAD for a segmentation fault in a Python extension

isting extension modules as a library. The core of the
system is generic and requires no modifications to the
scripting interpreter or existing extension modules. Fur-
thermore, the system does not introduce a performance
penalty as it does not rely upon program instrumentation
or tracing.

WAD works by converting fatal signals such as
SIGSEGV, SIGBUS, SIGFPE, and SIGABRT into
scripting language exceptions that contain debugging in-
formation collected from the call-stack of compiled ex-
tension code. By handling errors in this manner, the
scripting language interpreter is able to produce a cross-
language stack trace that contains information from both
the script code and extension code as shown for Python
and Tcl/Tk in Figures 1 and 2. In this case, the user is
given a very clear idea of what has happened without
having to launch a separate debugger.

The advantage to this approach is that it provides more
seamless integration between error handling in scripts
and error handling in extensions. In addition, it elimi-
nates the most common debugging step that a developer
is likely to perform in the event of a fatal error–running
a separate debugger on a core file and typing ’where’ to
get a stack trace. Finally, this allows end-users to pro-
vide extension writers with useful debugging informa-
tion since they can supply a stack trace as opposed to a
vague complaint that the program “crashed.”

4 Scripting Language Internals

In order to provide embedded error recovery, it is criti-
cal to understand how scripting language interpreters in-
terface with extension code. Despite the wide variety
of scripting languages, essentially every implementation
uses a similar technique for accessing foreign code.

Virtually all scripting languages provide an extension
mechanism in the form of a foreign function interface
in which compiled procedures can be called from the
scripting language interpreter. This is accomplished by
writing a collection of wrapper functions that conform to
a specified calling convention. The primary purpose of
the wrappers are to marshal arguments and return values
between the two languages and to handle errors. For
example, in Tcl, every wrapper function must conform
to the following prototype:

int
wrap_foo(ClientData clientData,

Tcl_Interp *interp,
int objc,
Tcl_Obj *CONST objv[])

{
/* Convert arguments */
...
/* Call a function */

Figure 2: Dialog box with WAD generated traceback information for a failed assertion in a Tcl/Tk extension

result = foo(args);
/* Set result */
...
if (success) {

return TCL_OK;
} else {

return TCL_ERROR;
}

}

Another common extension mechanism is an ob-
ject/type interface that allows programmers to create
new kinds of fundamental types or attach special prop-
erties to objects in the interpreter. For example, both Tcl
and Python provide an API for creating new “built-in”
objects that behave like numbers, strings, lists, etc. In
most cases, this involves setting up tables of function
pointers that define various properties of an object. For
example, if you wanted to add complex numbers to an
interpreter, you might fill in a special data structure with
pointers to methods that implement various numerical
operations like this:

NumberMethods ComplexMethods {
complex_add,
complex_sub,
complex_mul,
complex_div,
...

};

Once registered with the interpreter, the methods in this
structure would be invoked by various interpreter opera-
tors such as +, �, �, and =.

Most interpreters handle errors as a two-step process
in which detailed error information is first registered
with the interpreter and then a special error code is re-
turned. For example, in Tcl, errors are handled by set-
ting error information in the interpreter and returning a
value of TCL ERROR. Similarly in Python, errors are
handled by calling a special function to raise an excep-
tion and returning NULL. In both cases, this triggers the
interpreter’s error handler—possibly resulting in a stack
trace of the running script. In some cases, an interpreter
might handle errors using a form of the C longjmp
function. For example, Perl provides a special function
die that jumps back to the interpreter with a fatal error
[11].

The precise implementation details of these mecha-
nisms aren’t so important for our discussion. The critical
point is that scripting languages always access extension
code though a well-defined interface that precisely de-
fines how arguments are to be passed, values are to be
returned, and errors are to be handled.

5 Scripting Languages and Signals

Under normal circumstances, errors in extension code
are handled through the error-handling API provided by
the scripting language interpreter. For example, if an

invalid function parameter is passed, a program can sim-
ply set an error message and return to the interpreter.
Similarly, automatic wrapper generators such as SWIG
can produce code to convert C++ exceptions and other
C-related error handling schemes to scripting language
errors [18]. On the other hand, segmentation faults,
failed assertions, and similar problems produce signals
that cause the interpreter to abort execution.

Most scripting languages provide limited support for
Unix signal handling [19]. However, this support is not
sufficiently advanced to recover from fatal signals pro-
duced by extension code. Unlike signals generated for
asynchronous events such as I/O, execution can not be
resumed at the point of a fatal signal. Therefore, even
if such a signal could be caught and handled by a script,
there isn’t much that it can do except to print a diagnostic
message and abort before the signal handler returns. In
addition, some interpreters block signal delivery while
executing extension code–opting to handle signals at a
time when it is more convenient. In this case, a signal
such as SIGSEGV would simply cause the whole appli-
cation to freeze since there is no way for execution to
continue to a point where the signal could be delivered.
Thus, scripting languages tend to either ignore the prob-
lem or label it as a “limitation.”

6 Overview of WAD

WAD installs a signal handler for SIGSEGV, SIG-
BUS, SIGABRT, SIGILL, and SIGFPE using the
sigaction function [19]. Furthermore, it uses a spe-
cial option (SA SIGINFO) of signal handling that passes
process context information to the signal handler when a
signal occurs. Since none of these signals are normally
used in the implementation of the scripting interpreter
or by user scripts, this does not usually override any pre-
vious signal handling. Afterwards, when one of these
signals occurs, a two-phase recovery process executes.
First, information is collected about the execution con-
text including a full stack-trace, symbol table entries,
and debugging information. Then, the current stream
of execution is aborted and an error is returned to the
interpreter. This process is illustrated in Figure 3.

The collection of context and debugging information
involves the following steps:

� The program counter and stack pointer are obtained
from context information passed to the signal han-
dler.

� The virtual memory map of the process is obtained
from /proc and used to associate virtual memory
addresses with executable files, shared libraries,
and dynamically loaded extension modules [20].

� The call stack is unwound to collect traceback in-
formation. At each step of the stack traceback,
symbol table and debugging information is gath-
ered and stored in a generic data structure for later
use in the recovery process. This data is ob-
tained by memory-mapping the object files associ-
ated with the process and extracting symbol table
and debugging information.

Once debugging information has been collected, the
signal handler enters an error-recovery phase that at-
tempts to raise a scripting exception and return to a suit-
able location in the interpreter. To do this, the following
steps are performed:

� The stack trace is examined to see if there are any
locations in the interpreter to which control can be
returned.

� If a suitable return location is found, the CPU con-
text is modified in a manner that makes the signal
handler return to the interpreter with an error. This
return process is assisted by a small trampoline
function (partially written in assembly language)
that arranges a proper return to the interpreter af-
ter the signal handler returns.

Of the two phases, the first is the most straightforward to
implement because it involves standard Unix API func-
tions and common file formats such as ELF and stabs
[21, 22]. On the other hand, the recovery phase in which
control is returned to the interpreter is of greater interest.
Therefore, it is now described in greater detail.

7 Returning to the Interpreter

To return to the interpreter, WAD maintains a table of
symbolic names that correspond to locations within the
interpreter responsible for invoking wrapper functions
and object/type methods. For example, Table 1 shows
a partial list of return locations used in the Python im-
plementation. When an error occurs, the call stack is
scanned for the first occurrence of any symbol in this
table. If a match is found, control is returned to that
location by emulating the return of a wrapper function
with the error code from the table. If no match is found,
the error handler simply prints a stack trace to standard
output and aborts.

When a symbolic match is found, WAD invokes a
special user-defined handler function that is written for
a specific scripting language. The primary role of this
handler is to take debugging information gathered from
the call stack and generate an appropriate scripting lan-
guage error. One peculiar problem of this step is that the

>>> foo()
Traceback (most recent call last):

File "<stdin>", line 1, in ?

SegFault: [C stack trace]

...

?

�

[Python internals]

? 6
call builtin()

?
wrap foo()

?
foo()

?
doh()

?

SIGSEGV - WAD signal handler

1. Unwind C stack

2. Gather symbols and debugging info

3. Find safe return location

4. Raise Python exception

5. Modify CPU context and return

return assist

Return from signal6

�

NULL

Return to interpreter

Figure 3: Control Flow of the Error Recovery Mechanism for Python

generation of an error may require the use of parame-
ters passed to a wrapper function. For example, in the
Tcl wrapper shown earlier, one of the arguments was an
object of type “Tcl Interp *”. This object contains
information specific to the state of the interpreter (and
multiple interpreter objects may exist in a single appli-
cation). Unfortunately, no reference to the interpreter
object is available in the signal handler nor is a refer-
ence to interpreter guaranteed to exist in the context of a
function that generated the error.

To work around this problem, WAD implements a fea-
ture known as argument stealing. When examining the
call-stack, the signal handler has full access to all func-
tion arguments and local variables of each function on
the stack. Therefore, if the handler knows that an error
was generated while calling a wrapper function (as de-
termined by looking at the symbol names), it can grab
the interpreter object from the stack frame of the wrap-
per and use it to set an appropriate error code before re-
turning to the interpreter. Currently, this is managed by
allowing the signal handler to steal arguments from the
caller using positional information. For example, to grab

the Tcl Interp * object from a Tcl wrapper func-
tion, code similar to the following is written:

Tcl_Interp *interp;
int err;

interp = (Tcl_Interp *)
wad_steal_outarg(

stack,
"TclExecuteByteCode",
1,
&err

);
...

if (!err) {
Tcl_SetResult(interp,errtype,...);
Tcl_AddErrorInfo(interp,errdetails);

}

In this case, the Tcl interpreter argument passed to a
wrapper function is stolen and used to generate an er-
ror. Also, the name TclExecuteByteCode refers to
the calling function, not the wrapper function itself. At

Python symbol Error return value
call builtin NULL
PyObject Print -1
PyObject CallFunction NULL
PyObject CallMethod NULL
PyObject CallObject NULL
PyObject Cmp -1
PyObject DelAttrString -1
PyObject DelItem -1
PyObject GetAttrString NULL

Table 1: A partial list of symbolic return locations in the
Python interpreter

this time, argument stealing is only applicable to simple
types such as integers and pointers. However, this ap-
pears to be adequate for generating scripting language
errors.

8 Register Management

A final issue concerning the return mechanism has to
do with the behavior of the non-local return to the inter-
preter. Roughly speaking, this emulates the C longjmp
library call. However, this is done without the use of a
matching setjmp in the interpreter.

The primary problem with aborting execution and re-
turning to the interpreter in this manner is that most
compilers use a register management technique known
as callee-save [23]. In this case, it is the responsibility
of the called function to save the state of the registers
and to restore them before returning to the caller. By
making a non-local jump, registers may be left in an in-
consistent state due to the fact that they are not restored
to their original values. The longjmp function in the
C library avoids this problem by relying upon setjmp
to save the registers. Unfortunately, WAD does not have
this luxury. As a result, a return from the signal handler
may produce a corrupted set of registers at the point of
return in the interpreter.

The severity of this problem depends greatly on the
architecture and compiler. For example, on the SPARC,
register windows effectively solve the callee-save prob-
lem [24]. In this case, each stack frame has its own reg-
ister window and the windows are flushed to the stack
whenever a signal occurs. Therefore, the recovery mech-
anism can simply examine the stack and arrange to re-
store the registers to their proper values when control
is returned. Furthermore, certain conventions of the
SPARC ABI resolve several related issues. For exam-
ple, floating point registers are caller-saved and the con-

tents of the SPARC global registers are not guaranteed
to be preserved across procedure calls (in fact, they are
not even saved by setjmp).

On other platforms, the problem of register manage-
ment becomes more interesting. In this case, a heuristic
approach that examines the machine code for each func-
tion on the call stack can be used to determine where the
registers might have been saved. This approach is used
by gdb and other debuggers when they allow users to in-
spect register values within arbitrary stack frames [17].
Even though this sounds complicated to implement, the
algorithm is greatly simplified by the fact that compilers
typically generate code to store the callee-save registers
immediately upon the entry to each function. In addi-
tion, this code is highly regular and easy to examine. For
instance, on i386-Linux, the callee-save registers can be
restored by simply examining the first few bytes of the
machine code for each function on the call stack to fig-
ure out where values have been saved. The following
code shows a typical sequence of machine instructions
used to store callee-save registers on i386-Linux:

foo:
55 pushl %ebp
89 e5 mov %esp, %ebp
83 a0 subl $0xa0,%esp
56 pushl %esi
57 pushl %edi
...

As a fall-back, WAD could be configured to return
control to a location previously specified with setjmp.
Unfortunately, this either requires modifications to the
interpreter or its extension modules. Although this
kind of instrumentation could be facilitated by automatic
wrapper code generators, it is not a preferred solution
and is not discussed further.

9 Initialization

To simplify the debugging of extension modules, it is
desirable to make the use of WAD as transparent as pos-
sible. Currently, there are two ways in which the system
is used. First, WAD may be explicitly loaded as a script-
ing language extension module. For instance, in Python,
a user can include the statement import libwadpy
in a script to load the debugger. Alternatively, WAD
can be enabled by linking it to an extension module as a
shared library. For instance:

% ld -shared $(OBJS) -lwadpy

In this latter case, WAD initializes itself whenever the
extension module is loaded. The same shared library

is used for both situations by making sure two types of
initialization techniques are used. First, an empty ini-
tialization function is written to make WAD appear like
a proper scripting language extension module (although
it adds no functions to the interpreter). Second, the real
initialization of the system is placed into the initializa-
tion section of the WAD shared library object file (the
“init” section of ELF files). This code always executes
when a library is loaded by the dynamic loader is com-
monly used to properly initialize C++ objects. There-
fore, a fairly portable way to force code into the ini-
tialization section is to encapsulate the initialization in
a C++ statically constructed object like this:

class InitWad {
public:

InitWad() { wad_init(); }
};
/* This forces InitWad() to execute

on loading. */
static InitWad init;

The nice part about this technique is that it allows
WAD to be enabled simply by linking or loading; no
special initialization code needs to be added to an ex-
tension module to make it work. In addition, due to the
way in which the loader resolves and initializes libraries,
the initialization of WAD is guaranteed to execute before
any of the code in the extension module to which it has
been linked. The primary downside to this approach is
that the WAD shared object file can not be linked directly
to an interpreter. This is because WAD sometimes needs
to call the interpreter to properly initialize its excep-
tion handling mechanism (for instance, in Python, four
new types of exceptions are added to the interpreter).
Clearly this type of initialization is impossible if WAD is
linked directly to an interpreter as its initialization pro-
cess would execute before before the main program of
the interpreter started. However, if you wanted to per-
manently add WAD to an interpreter, the problem is eas-
ily corrected by first removing the C++ initializer from
WAD and then replacing it with an explicit initialization
call someplace within the interpreter’s startup function.

10 Exception Objects

Before WAD returns control to the interpreter, it col-
lects all of the stack-trace and debugging information
it was able to obtain into a special exception object.
This object represents the state of the call stack and in-
cludes things like symbolic names for each stack frame,
the names, types, and values of function parameters and
stack variables, as well as a complete copy of data on
the stack. This information is represented in a generic

manner that hides platform specific details related to the
CPU, object file formats, debugging tables, and so forth.

Minimally, the exception data is used to print a stack
trace as shown in Figure 1. However, if the interpreter
is successfully able to regain control, the contents of the
exception object can be freely examined after an error
has occurred. For example, a Python script could catch a
segmentation fault and print debugging information like
this:

try:
Some buggy code
...

except SegFault,e:
print ’Whoa!’
Get WAD exception object
t = e.args[0]
Print location info
print t.__FILE__
print t.__LINE__
print t.__NAME__
print t.__SOURCE__
...

Inspection of the exception object also makes it pos-
sible to write post mortem script debuggers that merge
the call stacks of the two languages and provide cross
language diagnostics. Figure 4 shows an example of
a simple mixed language debugging session using the
WAD post-mortem debugger (wpm) after an extension
error has occurred in a Python program. In the figure,
the user is first presented with a multi-language stack
trace. The information in this trace is obtained both from
the WAD exception object and from the Python trace-
back generated when the exception was raised. Next,
we see the user walking up the call stack using the ’u’
command of the debugger. As this proceeds, there is
a seamless transition from C to Python where the trace
crosses between the two languages. An optional feature
of the debugger (not shown) allows the debugger to walk
up the entire C call-stack (in this case, the trace shows
information about the implementation of the Python in-
terpreter). More advanced features of the debugger al-
low the user to query values of function parameters, lo-
cal variables, and stack frames (although some of this
information may not be obtainable due to compiler op-
timizations and the difficulties of accurately recovering
register values).

11 Implementation Details

Currently, WAD is implemented in ANSI C and small
amount of assembly code to assist in the return to
the interpreter. The current implementation supports

[Error occurred]
>>> from wpm import *
*** WAD Debugger ***
#5 [Python] in self.widget._report_exception() in ...
#4 [Python] in Button(self,text="Die", command=lambda x=self: ...
#3 [Python] in death_by_segmentation() in death.py, line 22
#2 [Python] in debug.seg_crash() in death.py, line 5
#1 0xfeee2780 in _wrap_seg_crash(self=0x0,args=0x18f114) in ’pydebug.c’, line 512
#0 0xfeee1320 in seg_crash() in ’debug.c’, line 20

int *a = 0;
=> *a = 3;

return 1;

>>> u
#1 0xfeee2780 in _wrap_seg_crash(self=0x0,args=0x18f114) in ’pydebug.c’, line 512

if(!PyArg_ParseTuple(args,":seg_crash")) return NULL;
=> result = (int)seg_crash();

resultobj = PyInt_FromLong((long)result);

>>> u
#2 [Python] in debug.seg_crash() in death.py, line 5

def death_by_segmentation():
=> debug.seg_crash()

>>> u
#3 [Python] in death_by_segmentation() in death.py, line 22

if ty == 1:
=> death_by_segmentation()

elif ty == 2:
>>>

Figure 4: Cross-language debugging session in Python where a user is walking a mixed language call stack.

Python and Tcl extensions on SPARC Solaris and i386-
Linux. Each scripting language is currently supported
by a separate shared library such as libwadpy.so
and libwadtcl.so. In addition, a language neu-
tral library libwad.so can be linked against non-
scripted applications (in which case a stack trace is sim-
ply printed to standard error when a problem occurs).
The entire implementation contains approximately 2000
semicolons. Most of this code pertains to the gather-
ing of debugging information from object files. Only a
small part of the code is specific to a particular scripting
language (170 semicolons for Python and 50 semicolons
for Tcl).

Although there are libraries such as the GNU Binary
File Descriptor (BFD) library that can assist with the ma-
nipulation of object files, these are not used in the imple-
mentation [25]. These libraries tend to be quite large and
are oriented more towards stand-alone tools such as de-

buggers, linkers, and loaders. In addition, the behavior
of these libraries with respect to memory management
would need to be carefully studied before they could be
safely used in an embedded environment. Finally, given
the small size of the prototype implementation, it didn’t
seem necessary to rely upon such a heavyweight solu-
tion.

A surprising feature of the implementation is that
a significant amount of the code is language indepen-
dent. This is achieved by placing all of the process in-
trospection, data collection, and platform specific code
within a centralized core. To provide a specific script-
ing language interface, a developer only needs to supply
two things; a table containing symbolic function names
where control can be returned (Table 1), and a handler
function in the form of a callback. As input, this han-
dler receives an exception object as described in an ear-
lier section. From this, the handler can raise a scripting

language exception in whatever manner is most appro-
priate.

Significant portions of the core are also relatively
straightforward to port between different Unix systems.
For instance, code to read ELF object files and stabs de-
bugging data is essentially identical for Linux and So-
laris. In addition, the high-level control logic is un-
changed between platforms. Platform specific differ-
ences primarily arise in the obvious places such as the
examination of CPU registers, manipulation of the pro-
cess context in the signal handler, reading virtual mem-
ory maps from /proc, and so forth. Additional changes
would also need to be made on systems with different
object file formats such as COFF and DWARF2. To ex-
tent that it is possible, these differences could be hidden
by abstraction mechanisms (although the initial imple-
mentation of WAD is weak in this regard and would ben-
efit from techniques used in more advanced debuggers
such as gdb). Despite these porting issues, the primary
requirement for WAD is a fully functional implementa-
tion of SVR4 signal handling that allows for modifica-
tions of the process context.

Due to the heavy dependence on Unix signal han-
dling, process introspection, and object file formats, it
is unlikely that WAD could be easily ported to non-Unix
systems such as Windows. However, it may be possible
to provide a similar capability using advanced features
of Windows structured exception handling [26]. For
instance, structured exception handlers can be used to
catch hardware faults, they can receive process context
information, and they can arrange to take corrective ac-
tion much like the signal implementation described here.

12 Modification of Interpreters?

A logical question to ask about the implementation of
WAD is whether or not it would make sense to modify
existing interpreters to assist in the recovery process. For
instance, instrumenting Python or Tcl with setjmp func-
tions might simplify the implementation since it would
eliminate issues related to register restoration and find-
ing a suitable return location.

Although it may be possible to make these changes,
there are several drawbacks to this approach. First, the
number of required modifications may be quite large.
For instance, there are well over 50 entry points to exten-
sion code within the implementation of Python. Second,
an extension module may perform callbacks and evalua-
tion of script code. This means that the call stack would
cross back and forth between languages and that these
modifications would have to be made in a way that al-
lows arbitrary nesting of extension calls. Finally, instru-
menting the code in this manner may introduce a perfor-

mance impact–a clearly undesirable side effect consid-
ering the infrequent occurrence of fatal extension errors.

13 Discussion

The primary goal of embedded error recovery is to
provide an alternative approach for debugging scripting
language extensions. Although this approach has many
benefits, there are a number drawbacks and issues that
must be discussed.

First, like the C longjmp function, the error recov-
ery mechanism does not cleanly unwind the call stack.
For C++, this means that objects allocated on stack will
not be finalized (destructors will not be invoked) and that
memory allocated on the heap may be leaked. Similarly,
this could result in open files, sockets, and other system
resources. In a multi-threaded environment, deadlock
may occur if a procedure holds a lock when an error oc-
curs.

In certain cases, the use of signals in WAD may in-
teract adversely with scripting language signal handling.
Since scripting languages ordinarily do not catch sig-
nals such as SIGSEGV, SIGBUS, and SIGABRT, the use
of WAD is unlikely to conflict with any existing signal
handling. However, most scripting languages would not
prevent a user from disabling the WAD error recovery
mechanism by simply specifying a new handler for one
or more of these signals. In addition, the use of certain
extensions such as the Perl sigtrap module would com-
pletely disable WAD [2].

A more difficult signal handling problem arises when
thread libraries are used. These libraries tend to override
default signal handling behavior in a way that defines
how signals are delivered to each thread [27]. In gen-
eral, asynchronous signals can be delivered to any thread
within a process. However, this does not appear to be a
problem for WAD since hardware exceptions are deliv-
ered to a signal handler that runs within the same thread
in which the error occurred. Unfortunately, even in this
case, personal experience has shown that certain imple-
mentations of user thread libraries (particularly on older
versions of Linux) do not reliably pass signal context in-
formation nor do they universally support advanced sig-
nal operations such as sigaltstack. Because of this,
WAD may be incompatible with a crippled implementa-
tion of user threads on these platforms.

A even more subtle problem with threads is that the
recovery process itself is not thread-safe (i.e., it is not
possible to concurrently handle fatal errors occurring in
different threads). For most scripting language exten-
sions, this limitation does not apply due to strict run-time
restrictions that interpreters currently place on thread
support. For instance, even though Python supports

threaded programs, it places a global mutex-lock around
the interpreter that makes it impossible for more than
one thread to concurrently execute within the interpreter
at once. A consequence of this restriction is that exten-
sion functions are not interruptible by thread-switching
unless they explicitly release the interpreter lock. Cur-
rently, the behavior of WAD is undefined if extension
code releases the lock and proceeds to generate a fault.
In this case, the recovery process may either cause an
exception to be raised in an entirely different thread or
cause execution to violate the interpreter’s mutual exclu-
sion constraint on the interpreter.

In certain cases, errors may result in an unrecover-
able crash. For example, if an application overwrites
the heap, it may destroy critical data structures within
the interpreter. Similarly, destruction of the call stack
(via buffer overflow) makes it impossible for the recov-
ery mechanism to create a stack-trace and return to the
interpreter. More subtle memory management problems
such as double-freeing of heap allocated memory can
also cause a system to fail in a manner that bears little
resemblance to actual source of the problem. Given that
WAD lives in the same process as the faulting applica-
tion and that such errors may occur, a common question
to ask is to what extent does WAD complicate debugging
when it doesn’t work.

To handle potential problems in the implementation
of WAD itself, great care is taken to avoid the use of
library functions and functions that rely on heap allo-
cation (malloc, free, etc.). For instance, to provide dy-
namic memory allocation, WAD implements its own
memory allocator using mmap. In addition, signals are
disabled immediately upon entry to the WAD signal han-
dler. Should a fatal error occur inside WAD, the appli-
cation will dump core and exit. Since the resulting core
file contains the stack trace of both WAD and the faulting
application, a traditional C debugger can be used to iden-
tify the problem as before. The only difference is that a
few additional stack frames will appear on the traceback.

An application may also fail after the WAD signal
handler has completed execution if memory or stack
frames within the interpreter have been corrupted in a
way that prevents proper exception handling. In this
case, the application may fail in a manner that does not
represent the original programming error. It might also
cause the WAD signal handler to be immediately rein-
voked with a different process state–causing it to report
information about a different type of failure. To ad-
dress these kinds of problems, WAD creates a tracefile
wadtrace in the current working directory that con-
tains information about each error that it has handled. If
no recovery was possible, a programmer can look at this
file to obtain all of the stack traces that were generated.

If an application is experiencing a very serious prob-

lem, WAD does not prevent a standard debugger from
being attached to the process. This is because the debug-
ger overrides the current signal handling so that it can
catch fatal errors. As a result, even if WAD is loaded,
fatal signals are simply redirected to the attached debug-
ger. Such an approach also allows for more complex
debugging tasks such as single-step execution, break-
points, and watchpoints–none of which are easily added
to WAD itself.

Finally, there are a number of issues that pertain to
the interaction of the recovery mechanism with the in-
terpreter. For instance, the recovery scheme is unable
to return to procedures that might invoke wrapper func-
tions with conflicting return codes. This problem mani-
fests itself when the interpreter’s virtual machine is built
around a large switch statement from which different
types of wrapper functions are called. For example, in
Python, certain internal procedures call a mix of func-
tions where both NULL and -1 are returned to indicate
errors (depending on the function). In this case, there
is no way to specify a proper error return value because
there will be conflicting entries in the WAD return ta-
ble (although you could compromise and return the error
value for the most common case). The recovery process
is also extremely inefficient due to its heavy reliance on
mmap, file I/O, and linear search algorithms for finding
symbols and debugging information. Therefore, WAD
would unsuitable as a more general purpose extension
related exception handler.

Despite these limitations, embedded error recovery is
still a useful capability that can be applied to a wide va-
riety of extension related errors. This is because errors
such as failed assertions, bus errors, and floating point
exceptions rarely result in a situation where the recovery
process would be unable to run or the interpreter would
crash. Furthermore, more serious errors such as segmen-
tation faults are more likely to caused by an uninitialized
pointer than a blatant destruction of the heap or stack.

14 Related Work

A huge body of literature is devoted to the topic of ex-
ception handling in various languages and systems. Fur-
thermore, the topic remains one of active interest in the
software community. For instance, IEEE Transactions
on Software Engineering recently devoted two entire is-
sues to current trends in exception handling [29, 30].
Unfortunately, very little of this work seems to be di-
rectly related to mixed compiled-interpreted exception
handling, recovery from fatal signals, and problems per-
taining to mixed-language debugging.

Perhaps the most directly relevant work is that of ad-
vanced programming environments for Common Lisp

[31]. Not only does CL have a foreign function interface,
debuggers such as gdb have previously been modified to
walk the Lisp stack [33, 34]. Furthermore, certain Lisp
development environments have previously provided a
high degree of integration between compiled code and
the Lisp interpreter[32].

In certain cases, a scripting language module has been
used to provide partial information for fatal signals. For
example, the Perl sigtrap module can be used to pro-
duce a Perl stack trace when a problem occurs [2]. Un-
fortunately, this module does not provide any informa-
tion from the C stack. Similarly, advanced software de-
velopment environments such as Microsoft’s Visual Stu-
dio can automatically launch a C/C++ debugger when an
error occurs. Unfortunately, this doesn’t provide any in-
formation about the script that was running.

In the area of programming languages, a number of
efforts have been made to map signals to exceptions in
the form of asynchronous exception handling [35, 37,
36]. Unfortunately, this work tends to concentrate on the
problem of handling asynchronous signals related to I/O
as opposed to synchronously generated signals caused
by software faults.

With respect to debugging, little work appears to have
been done in the area of mixed compiled-interpreted de-
bugging. Although modern debuggers certainly try to
provide advanced capabilities for debugging within a
single language, they tend to ignore the boundary be-
tween languages. As previously mentioned, debuggers
have occasionally been modified to support other lan-
guages such as Common Lisp [34]. However, little work
appears to have been done in the context of modern
scripting languages. One system of possible interest in
the context of mixed compiled-interpreted debugging is
the Rn system developed at Rice University in the mid-
1980’s [38]. This system, primarily developed for sci-
entific computing, allowed control to transparently pass
between compiled code and an interpreter. Furthermore,
the system allowed dynamic patching of an executable
in which compiled procedures could be replaced by an
interpreted replacement. Although this system does not
directly pertain to the problem of debugging of script-
ing language extensions, it is one of the few examples of
a system in which compiled and interpreted code have
been tightly integrated within a debugger.

More recently, a couple of efforts have emerged to that
seem to address certain issues related to mixed-mode de-
bugging of interpreted and compiled code. PyDebug is
a recently developed system that focuses on problems
related to the management of breakpoints in Python ex-
tension code [39]. It may also be possible to perform
mixed-mode debugging of Java and native methods us-
ing features of the Java Platform Debugger Architecture
(JPDA) [40]. Mixed-mode debugging support for Java

may also be supported in advanced debugging systems
such as ICAT [41]. However, none of these systems ap-
pear to have taken the approach of converting hardware
faults into Java errors or exceptions.

15 Future Directions

As of this writing, WAD is only an experimental pro-
totype. Because of this, there are certainly a wide vari-
ety of incremental improvements that could be made to
support additional platforms and scripting languages. In
addition, there are a variety of improvements that could
be made to provide better integration with threads and
C++. One could also investigate heuristic schemes such
as backward stack tracing that might be able to recover
partial debugging information from corrupted call stacks
[28].

A more interesting extension of this work would be to
see how the exception handling approach of WAD could
be incorporated with the integrated development envi-
ronments and script-level debugging systems that have
already been developed. For instance, it would be inter-
esting to see if a graphical debugging front-end such as
DDD could be modified to handle mixed-language stack
traces within the context of a script-level debugger [42].

It may also be possible to extend the approach taken
by WAD to other types of extensible systems. For in-
stance, if one were developing a new server module for
the Apache web-server, it might be possible to redirect
fatal module errors back to the server in a way that pro-
duces a webpage with a stack trace [43]. The exception
handling approach may also have applicability to situ-
ations where compiled code is used to build software
components that are used as part of a large distributed
system.

16 Conclusions and Availability

This paper has presented a mechanism by which fatal
errors such as segmentation faults and failed assertions
can be handled as scripting language exceptions. This
approach, which relies upon advanced features of Unix
signal handling, allows fatal signals to be caught and
transformed into errors from which interpreters can pro-
duce an informative cross-language stack trace. In doing
so, it provides more seamless integration between script-
ing languages and compiled extensions. Furthermore,
this has the potential to greatly simplify the frustrating
task of debugging complicated mixed scripted-compiled
software.

The prototype implementation of this system is avail-
able at :

http://systems.cs.uchicago.edu/wad.

Currently, WAD supports Python and Tcl on SPARC
Solaris and i386-Linux systems. Work to support ad-
ditional scripting languages and platforms is ongoing.

17 Acknowledgments

Richard Gabriel and Harlan Sexton provided interest-
ing insights concerning debugging capabilities in Com-
mon Lisp. Stephen Hahn provided useful information
concerning the low-level details of signal handling on
Solaris. I would also like to thank the technical review-
ers and Rob Miller for their useful comments.

References

[1] J. K. Ousterhout, Tcl: An Embeddable Command
Language, Proceedings of the USENIX Associa-
tion Winter Conference, 1990. p.133-146.

[2] L. Wall, T. Christiansen, and R. Schwartz, Pro-
gramming Perl, 2nd. Ed. O’Reilly & Associates,
1996.

[3] M. Lutz, Programming Python, O’Reilly & Asso-
ciates, 1996.

[4] Thomas Lord, An Anatomy of Guile, The Interface
to Tcl/Tk, USENIX 3rd Annual Tcl/Tk Workshop
1995.

[5] T. Ratschiller and T. Gerken, Web Application De-
velopment with PHP 4.0, New Riders, 2000.

[6] D. Thomas, A. Hunt, Programming Ruby,
Addison-Wesley, 2001.

[7] D.M. Beazley, SWIG : An Easy to Use Tool for
Integrating Scripting Languages with C and C++,
Proceedings of the 4th USENIX Tcl/Tk Workshop,
p. 129-139, July 1996.

[8] P. Thompson, SIP,
http://www.thekompany.com/
projects/pykde.

[9] P. F. Dubois, Climate Data Analysis Software, 8th
International Python Conference, Arlington, VA.,
2000.

[10] P. Peterson, J. Martins, and J. Alonso, Fortran to
Python Interface Generator with an application to
Aerospace Engineering, 9th International Python
Conference, submitted, 2000.

[11] S. Srinivasan, Advanced Perl Programming,
O’Reilly & Associates, 1997.

[12] Wolfgang Heidrich and Philipp Slusallek, Auto-
matic Generation of Tcl Bindings for C and C++
Libraries., USENIX 3rd Tcl/Tk Workshop, 1995.

[13] K. Martin, Automated Wrapping of a C++ Class
Library into Tcl, USENIX 4th Tcl/Tk Workshop,
p. 141-148, 1996.

[14] C. Lee, G-Wrap: A tool for exporting C libraries
into Scheme Interpreters,
http://www.cs.cmu.edu/˜chrislee/
Software/g-wrap.

[15] G. Couch, C. Huang, and T. Ferrin, Wrappy
:A Python Wrapper Generator for C++ Classes,
O’Reilly Open Source Software Convention, 1999.

[16] J. K. Ousterhout, Scripting: Higher-Level Pro-
gramming for the 21st Century, IEEE Computer,
Vol 31, No. 3, p. 23-30, 1998.

[17] R. Stallman and R. Pesch, Using GDB: A Guide
to the GNU Source-Level Debugger. Free Software
Foundation and Cygnus Support, Cambridge, MA,
1991.

[18] D.M. Beazley and P.S. Lomdahl, Feeding a Large-
scale Physics Application to Python, 6th In-
ternational Python Conference, co-sponsored by
USENIX, p. 21-28, 1997.

[19] W. Richard Stevens, UNIX Network Program-
ming: Interprocess Communication, Volume 2.
PTR Prentice-Hall, 1998.

[20] R. Faulkner and R. Gomes, The Process File
System and Process Model in UNIX System V,
USENIX Conference Proceedings, January 1991.

[21] J. R. Levine, Linkers & Loaders. Morgan Kauf-
mann Publishers, 2000.

[22] Free Software Foundation, The “stabs” debugging
format. GNU info document.

[23] M.L. Scott. Programming Language Pragmatics,
Morgan Kaufmann Publishers, 2000.

[24] D. Weaver and T. Germond, SPARC Architecture
Manual Version 9, Prentice-Hall, 1993.

[25] S. Chamberlain. libbfd: The Binary File Descrip-
tor Library. Cygnus Support, bfd version 3.0 edi-
tion, April 1991.

[26] M. Pietrek, A Crash Course on the Depths of
Win32 Structured Exception Handling, Microsoft
Systems Journal, January 1997.

[27] F. Mueller, A Library Implementation of POSIX
Threads Under Unix, USENIX Winter Technical
Conference, San Diego, CA., p. 29-42, 1993.

[28] J. B. Rosenberg, How Debuggers Work: Algo-
rithms, Data Structures, and Architecture, John
Wiley & Sons, 1996.

[29] D.E. Perry, A. Romanovsky, and A. Tripathi, Cur-
rent Trends in Exception Handling-Part I, IEEE
Transactions on Software Engineering, Vol 26, No.
9, p. 817-819, 2000.

[30] D.E. Perry, A. Romanovsky, and A. Tripathi, Cur-
rent Trends in Exception Handling-Part II, IEEE
Transactions on Software Engineering, Vol 26, No.
10, p. 921-922, 2000.

[31] G.L. Steele Jr., Common Lisp: The Language, Sec-
ond Edition, Digital Press, Bedford, MA. 1990.

[32] R. Gabriel, private correspondence.

[33] H. Sexton, Foreign Functions and Common Lisp,
in Lisp Pointers, Vol 1, No. 5, 1988.

[34] W. Henessey, WCL: Delivering Efficient Common
Lisp Applications Under Unix, ACM Conference
on Lisp and Functional Languages, p. 260-269,
1992.

[35] P.A. Buhr and W.Y.R. Mok, Advanced Exception
Handling Mechanisms, IEEE Transactions on Soft-
ware Engineering, Vol. 26, No. 9, p. 820-836,
2000.

[36] S. Marlow, S. P. Jones, and A. Moran. Asyn-
chronous Exceptions in Haskell. In 4th Interna-
tional Workshop on High-Level Concurrent Lan-
guages, September 2000.

[37] J. H. Reppy, Asynchronous Signals in Standard
ML. Technical Report TR90-1144, Cornell Univer-
sity, Computer Science Department, 1990.

[38] A. Carle, D. Cooper, R. Hood, K. Kennedy, L. Tor-
czon, S. Warren, A Practical Environment for Sci-
entific Programming. IEEE Computer, Vol 20, No.
11, p. 75-89, 1987.

[39] P. Stoltz, PyDebug, a New Application for Inte-
grated Debugging of Python with C and Fortran
Extensions, O’Reilly Open Source Software Con-
vention, San Diego, 2001 (to appear).

[40] Sun Microsystems, Java Platform Debugger Ar-
chitecture, http://java.sun.com/products/jpda

[41] IBM, ICAT Debugger,
http://techsupport.services.ibm.com/icat.

[42] A. Zeller, Visual Debugging with DDD, Dr. Dobb’s
Journal, March, 2001.

[43] Apache HTTP Server Project,
http://httpd.apache.org/

