The Computer Magazine for Scientists and Engineers

MAY/JUN
1997

oo m

AERICAN Gontrolling Data Glut

INSTITUTE

OFPHYSICS Anniversary Book Reviews




I —— T

Controlling the Data Glut in
Large-Scale Molecular-Dynamics
Simulations

David M. Beazley and e :
Peter S. Lomdahl Scr ipting languages b rmg

structure and convenience 1o
large-scale scientific codes
With the growing availability of more and permit Simple analySiS

powerful computing platforms, large-
scale computer simulations of materials are .
becoming increasingly popular. In particular, IEChn lq ueS to be dep loy ed
the growth in recent ycars in the area of _
large-memory parallel multicomputers has l

allowed classical molecular-dynamics simu-

lations to be performed in three dimensions

with system sizes that are approaching ex-

perimentally relevant regimes, namely, the

micrometer scale. Simulations at this length scale promise
eventually to bridge the gap between the microscopic (atomis-
tic) description and the macroscopic (continuum-mechanics)
description of materials.

In 1992 we began work ona parallel molecular-dynamics
code that would allow us to Tun classical molecular-dynamics
calculations on systems with many millions of atoms. This
work was in part inspired by the growing needs of the mate-

Direct microscopic simulations at the micrometer scale
require at least hundreds of millions, if not billions, of atoms.
With such large systems, the physicists and materials scien-
tists interested in using the tools we have developed are
confronted with formidable interpretative challenges. How
do you analyze and extract useful information out of the
enormous data sets resulting from such simulations? Consider
a molecular-dynamics simulation with 100 million atoms that

rials-science community to simulate systems large enough to rﬁns‘ for 10 ns‘. Y(())L; Sm 1gh;‘\:fan.t t? pmdl}llci % f‘slr]ltelpsh?_t tm;
be experimentally relevant and in part by the recent availabil- the system every 1.22 13- ypical SHApSIOL IS, _consns =
ity of the 32-Gbyte, 1024-processor Thinking Machines CM- three coordinates apd a.couple of scalar values, for a total of
5 parallel computer at the Advanced Computing Laboratory 2 bytes atom. T}_US “im resglt in forty 2-Gbyte files, for a
in Los Alamos. Our work resulted in a computer code called total of 80 Gbytes, which typically excee_:ds t.he disk quota of
SPaSM, for Scalable Parallel Short-range Molecular dynam- mosy ERRcis large‘U.S. supercomputing mstgllahqns.

ics, that has been described elsewhere in detail!-3 (see “Cluster Pyena su}gle_z-(:byte snapsho_t presents a g1antic prob-
[mpacts on Surfaces.” p. 231). The SPaSM code has been lem for today’s high-end workstations. They smp]y do not
ported to several multicomputer platforms supporting both have enough memory or CELA power 10 pageead this agoun
message-passing (on distributed memory computers) an i of data effectively. Even when a high-powered workstation

multithreading (on shared-memory systems). Although our is available fQY.SpCh = p.roject, moving _the data to t_h; machine
work was at least partly successful, in terms of increasing the may be prohibitively difficult—especially when it 15 located

; : I at a remote location.
execution speed and accessible system size, 1t also opened a i
whole area of new problems. Faced by these daunting problems, we were forced to

re-evaluate our approach to large-scale simulation, analysis,

David Beazley is a graduate student working toward his Ph.D. in the Department and visualization. In this article we describe some of the main
of Computer Science at the University of Utah, Salt Lake City, UT 84112. E-mail: :deas behind this process and the system that has evolved.
beazley@es.utah.edu : ’

Peier Lomdahl is a staff member in the Condensed Matter and Statistical Physics Ph)’SlCS, software, and the need for Slmple tools

Group in the Theoretical Division at Los Alamos National Laboratory, Los As computational physicists, our primary goal has been
Alamos, NM 87545. E-mail: pxl@Janl.gov to study physics, not computer science. However, computing

230 COMPUTERSIN PHYSICS, VOL. 11,NO. 3, MAY/JUN 1997 © 1997 AMERICAN INSTITUTE OF PHYSICS S0894-1866(97)00603-2




Cluster Impacts on Surfaces

This modest-size simulation was performed in 1993 with a little more than 1 million atoms. A cluster of 1000
atoms impacts the {111} surface of an fcc crystal, with initial conditions as shown in part a of the figure. The
interatomic forces were represented by a Lennard-Jones spline potential in this case. The initial kinetic energy of
the small cluster was approximately 20 keV.

Part b shows a snapshot shortly after the impact. The anisotropy
ofthe elastic constants in the fcc lattice is clearly seen in the hexagonal
pattern generated by the impact of the square cluster.

Part ¢ shows the underside of the thin plate a little further into
the simulation. Careful analysis confirms that the velocity fields
generated on the surface and inside the solid are in accordance with
standard elastic theory.!?

Atomic cluster (a) strikes fec crystal (b) and begins (c) to penetrate it.

Simulations such as these are currently being used in studies
of how to produce compact and strongly adhering thin films of
different materials. Large-scale molecular-dynamics simulations
can effectively capture much of the essential physics of the clus-
ter/surface interaction.!’

b S

2 COMPUTERS IN PHYSICS, VOL. 11, NO. 3, MAY/JUN 1997 231




issues play a central role in two different aspects of our
research. First, there is the development of new physical
models, initial conditions, and numerical methods. These are
typically implemented in C, make use of a variety of data
structures, and involve parallel-programming methods. Sec-
ond, there is the post-processing of simulation data. This
traditionally involves the use of special tools or third-party
packages for data analysis and visualization. Both tasks are
important, and it is their separation that is at the root of our
problem. Third-party or commercial tools are typically inca-
pable of handling the data generated by simulation of large
problems, and simply trying to move data around and trying
to get different tools to work can waste an appalling amount
of time. This situation is frustrating and unacceptable.

To alleviate these difficulties, considerable effort has
been expended in the development of computational “prob-
lem-solving environments.” These systems attempt to inte-
grate various software components into a unified system and
hide the underlying complexity from the user. Their ultimate
goal is to tightly couple all aspects of a problem including
simulation, data analysis, and visualization. Although we feel
that this is an admirable goal, current implementations leave
much to be desired. Most notably, such systems tend to
provide very poor performance on large problems. Moreover,
they are too complicated to extend and use, and they tend to
rely too heavily on expensive graphics workstations. As a
result, they are of limited usefulness in everyday computa-
tional-physics research.

Nevertheless, the idea of providing integration of simu-
lation and data analysis is an interesting one. It is our view,
however, that the approach taken should emphasize simplic-
ity and efficiency rather than attempting to create a highly
sophisticated package with thousands of features. Tools
should be simple to use, offer high performance, be maintain-
able across a wide variety of machines, and not get in the way
of physics research. In particular, we feel that the following
features are essential:

* Performance and memory efficiency. Available computer
resources must be used wisely when working with large
problems.

» Extensibility. Users must be able to add new features and
make modifications without having first to get a computer-
science degree.

¢ Portability. Machines come and go; software tends to stick
around for a while.

» Interactivity. Users need to be able to modify the data-
analysis and visualization procedures at intermediate
stages in the computation.

¢ Support of existing code.

e Loose integration. Allow varied components to be used,
even if they are unrelated: do not require everything to
conform to a rigid framework.

The problem with Fortran, C, and C++ programming
Achieving the above goals is a difficult problem in which
many of the difficulties are simply due to the inherent prob-
lems of programming in a compiled language like Fortran or
C. Although such languages excel at providing high-perform-
ance and low-level systems programming, they do a poor job

232 COMPUTERS IN PHYSICS, VOL. 11, NO. 3, MAY/JUN 1997

at most other tasks. It is not easy to build an interactive
program without a lot of work. Extending such systems with
new capabilities requires more work and can result in a huge
mess without a lot of attention. If our ultimate goal is to build
a system that integrates simulation, data analysis, and visuali-
zation, the problem suddenly becomes very difficult. How do
we get different components to talk to cach other? How do
we make it easy to add new features? Do we adopt object-ori-
ented programming techniques and reimplement everything
in C++? How do we avoid code-bloat and making the system
so complicated that no one will want to use it anymore? When
you add the difficulty of debugging and compiling such a
system, it is no surprise that this approach seems to be plagued
with so many pitfalls.

In our experience, it seems that most physics codes are
relatively simple—it is all the supporting code that is compli-
cated. Much of this complexity occurs, in large part, because
compiled languages simply are not very good at managing the
rapidly changing nature of research applications. When work-
ing on a problem, we are always trying different methods,
changing parameters, adding new functions, and investigat-
ing new analytical methods. Writing a C program to handle
all these possibilities is a nightmare. While some may see
object-oriented programming in C++ as a solution to all of
these problems, we suggest that a better approach might be
not to use Fortran, C, or C++ for everything.

Controlling applications with scripting languages

Rather than using compiled languages for everything, we
have been exploring the use of interpreted scripting languages
for controlling and interacting with physics applications. The
idea is really quite simple—write performance-critical opera-
tion in C and use a scripting language for gluing components
together and providing a high-level interface. The approach
is essentially identical to that used in commercial packages
such as Matlab or IDL. This approach has also been described
previously in Computers in Physics.* By using this model,
users can control a physics application by interactively enter-
ing commands, writing scripts, and adding additional func-
tionality in the interface language without having to modify
the underlying C code.

Finding an interface language. Unfortunately, building
an interactive physics application in this manner can require
a significant coding effort. Researchers could consider writ-
ing their own language. but doing this usually requires some
background in compilers and a significant amount of spare
time. However, in recent years, a number of freely available,
high-quality scripting languages such as Tcl, Python, and Perl
have become available.” All these languages can be inte-
grated with C/C++ code and have tens of thousands of users.
As a result, they are stable, well-debugged, and well-docu-
mented. More recently, automated code-generation tools such
as SWIG!? have made it extremely easy to integrate C/C++
code with such languages without having to know many
low-level details (see “SWIG Automatically Builds Script-
ing-Language Interfaces,” p. 233). Consequently, it can be
surprisingly easy to build a powerful physics code with a
minimal amount of work.

The benefits. Scripting languages provide a simple yet




w0 TR T e 1.

e

powerful mechanism for controlling physics codes. They are
highly memory-efficient and easy to port between a variety
of machines. They provide high-level data structures and
make it possible to glue various software components to-
gether. They can also be run interactively in a manner similar
to commercial packages. Given the widespread use of com-
mon languages, a huge number of third-party modules that
can be used in an application are also available to a user. Most
important, such languages provide a physicist with an easy-
to-use, highly precise user interface that provides a tremen-
dous amount of flexibility without getting in the way of the
real problem at hand.

Extending the SPaSM molecular-dynamics code

For the past two years, we have applied the use of
scripting languages to the SPaSM molecular-dynamics code.
In doing so, we have provided a mechanism for integrating
simulation, data analysis, and visualization. As a result, we
are now able to manage effectively very large simulations
involving tens to hundreds of millions of atoms. This can be
done using ordinary workstations and network connections.
Although parts of this system have been described else-
where,!!"!* the next few sections illustrate various aspects of
the system and how it is being used.

Automated interface generation with SWIG. The core
functionality of our molecular-dynamics code is written in
ANSI C. To build a scripting-language interface, we want to
make certain C functions visible to the user. These functions
will become new “commands™ that can be typed interactively
or placed in scripts. To do this, we are using SWIG (Simpli-
fied Wrapper and Interface Generator), which parses ANSI
C/C++ declarations and automatically generates the code
needed to extend a variety of scripting languages with new
functions. SWIG supports Tcl, Python, Perl, and Guile, and
so the choice of scripting language is mostly a matter of user
preference (we have been using Python, but this is not a strict
requirement). To create an interface, we simply create an
interface file such as the following. It basically consists of the
declarations for the functions we want to make available to
the user of the code:

// spasm.i : SWIG Interface file
Yemodule spasm

c%{

#include “SPaSM.h”

Yo}

void memory(int size);

void geometry(double xmin, double ymin, double zmin,
double xmax, double ymax, double xmax, double cutoff);

void redistribute();

void boundary _periodic();

void init_lj(double epsilon, double sigma);

void force_lj();

void integrate_adv_coord(double dt);

void integrate_adv_velocity(double dit);

void output_particles(char *filename);

void ic_crack(int nx, int ny, int nz, double vel, double width,
double gap, double temp, double r0, double cutoff);

SWIG Automatically Builds
Scripting-Language Interfaces

Simplified Wrapper and Interface Generator (SWIG)
is an automated tool that we have developed for building
scripting-language interfaces to C/C++ programs. The
user supplies a list of functions and variables in the form
of ANSI C/C++ prototypes. These are turned into the
appropriate “wrapper code” needed to access the functions
from a scripting-language interface. Here is a simple ex-
ample:

// File : example.i
Yemodule example
Yof

#include “header.h”
%o}

extern int fact(int); /I A simple function
FILE *fopen(char *flename, char *mode); // Functions with pointers
void write_data(FILE *f);

void fclose(FILE *f);

class List {
public:

List();

~List();

void insert(char *);

int length();

void remove(char *);
B

These functions can be compiled and used by per-

forming steps similar to the following:

unix > swig -python example.i

unix > cc -c example_wrap.c - <includes>

unix > Id -shared example_wrap.c <objs> -0 examplemodule.so
unix > python

Python 1.4 (Oct 28 1996) [GCC 2.7.2.1]

Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> from example import *

>>> fact(4)

24

>>> f = fopen(“myfile”,"w")

>>> write_data(f)

>>> fclose(f)

>>> | = List()

>>> linsert(“Dave”)

>>> linsert(“Peter’)

>>> |.lengthy()
2

>>> |.remove('Dave”)
>>>

SWIG is extensively documented and freely avail-
able. For more information, go to http://www.cs.utah.
edu/~beazley/SWIG.

COMPUTERS IN PHYSICS, VOL. 11, NO. 3, MAY/JUN 1997 233




At compile time, these specifications are automatically
turned into scripting-language commands. This automation
makes the interface-building process extremely easy and frees
the user from worrying about the low-level details.

Using the scripting-language interface. Now to run a
simulation, we can simply write a script that calls our various
C functions. The following Python script shows a simple
example of how this might be done.

from spasm import *

nx =15

Ve 5i, =15

nz =00

vel =85

temp =0.1

width =0.3333
r0 =1.0901733
gap =01

Dt =0.0025
cutoff =2.0
nsteps = 1000
frq =50

# Set up a problem

ic_crack(nx,ny,nz,vel,width,gap,temp,r0,cutoff)
init_lj(1,1,cutoff)

for step in range(0,nsteps):

integrate_adv_coord(Dt) # Update positions

boundary _periodic() # Apply boundary conditions
redistribute() # Move particles between cells
force_lj() # Calculate force
integrate_adv_velocity(Dt) # Update velociies

if (step % freq) == 0:

output_particles('Dat'+str(step))

Although simplistic, this illustrates the general idea.
Rather than using C, we can specify the control of a simulation
inascript. Unlike older versions of our code, there is no longer
any main program written in C defining an exact sequence of
operations; the user is given full freedom to call commands
in any order and at any time. Most commands in the script are
still C functions, but if we want to change parameters or
modify the integration procedure in some manner, this is
easily accomplished. In a sense, this is the real point: When
an interpreted language handles the overall structure and
control of a simulation, procedures become easy to change,
and modification of the underlying C code is not really
required.

In SPaSM, we have more than 200 C functions for
running simulations, performing analysis, and visualization.
Python is used to provide an environment for interacting with
these functions and performing various high-level operations.

Interactive application-specific debugging

A common problem that we face almost daily is the
debugging and testing of physical applications. Compared
with the traditional task of resolving program crashes, this is
more difficult. We need to be able to examine the state of a
simulation and make sure we are getting the right answers.

234 COMPUTERS IN PHYSICS, VOL. 11, NO. 3, MAY/JUN 1997

Often we need to compare output with other codes to verify
correct operation. In other instances, subtle bugs can work
their way into a simulation and become almost impossible to
find later.

Since we are using an interpreted language interface, we
can easily perform highly sophisticated diagnostics and de-
bugging. With additional specifications, SWIG provides di-
rect access to underlying data structures and functions, and so
it is rarely necessary to write C code or to recompile the
system. Suppose, for example, that we are implementing a
new particle interaction. To verify its operation, we might
need to to dump the data to a file as an ASCII-formatted table,
possibly for visual inspection or in a format suitable for input
into a different program. This is easily accomplished using a
simple script such as the following:

def dump(filename):
f = open(filename,"w")
p = first_particle()
n = count_particles()
for i in xrange(0,n):
fwrite(“Yed %ef Y%ef %6f\n” % (p[i]-type, plil.r-x, plil.r.y, plil.r.z))
f.close()

The script is simple to write and works exactly as you
would expect. It loops over all the particles stored in memory
and extracts individual members in a syntactically similar
manner as in C. There is really no need (or desirability) to
have this functionality in the C code. In many cases, debug-
ging code might only be used once or twice. Scripting lan-
guages are extremely convenient for writing throwaway code
and performing unusual operations.

High-level data analysis and visualization

Using the scripting-language interface, we recently de-
veloped a powerful data-analysis and visualization system.
The “engine” for this system consists of a small number of
useful C functions and a simple graphics library for creating
images on parallel machines. The library supports two- and
three-dimensional images and creates GIF files as output.
Python has been used to encapsulate the library into a fully
object-oriented visualization system that is visible to the user.
The associated Python code provides structure and organiza-
tion to the underlying C code. Simple operations such as
drawing tickmarks and axis labels are also implemented in
Python and can be easily customized. Within this system,
each “image” is an object that can be manipulated by the user
as needed. There is no theoretical limit on the number of such
images or how they can be used. To illustrate how this works,
we consider the simple example of finding dislocations in a
material.

Example: Visualizing dislocations in a solid. Visualizing
dislocations in a material is useful during simulations of
fracture. For this purpose, we can use a simple scheme in
which the potential-energy contributions of individual atoms
are considered. The displacement of atoms in the lattice
affects their contribution to the potential energy, allowing us
to distinguish them from the non-displaced atoms. A C func-
tion to perform this identification and make a plot would look
roughly like this:




venfi Selective plotting based on energy identifies
e atoms participating in dislocation phenomena.
i to Parts (a) and (b) reveal sensitivity of the
phenomena to details of the interatomic potential,
ce, we
nd de- =
les di- . ; ! . e
and so Ductile Failure and Dislocation
le the s J
it Generation in Copper
Irtnalbglgt This example shows how a large-scale simu-
E lation with 35 million atoms can be analyzed using
- a the technique described in the text to show only
il those atoms with a potential energy slightly above
the pristine bulk value. Part a of the figure shows a
rich dislocation-loop structure as a result of a
crack-blunting process in copper. The solid was a)
pulled apart at a constant strain rate of approxi-
mately 10%s applied in the vertical direction. The crack
blunts by emitting dislocation loops: blunting loops parallel
) to the crack front and oblique jogging loops at the interface
with the free surface. Half the computational sample has
been cut away so that it is possible to see the inside of the
1S you :
crack.
eery The importance of the specifics of the interatomic
imilar ; g ; ;
1 potential can be appreciated by Inspecting part b of the
) o figure, where a similar, but smaller simulation of approxi-
febug- mately 1.8 million atoms has been performed with a Morse
g lan- potential (&= 7). In this case only jogging dislocation loops
feode are seen. In general, the shorter the range of the potential,
the more brittle the material and the harder it is to emit
blunting dislocations.
. Details of this work can be found in Ref, 16. See also the
yztem SPaSM home page: http://bifrost.lanl.gov/MD/MD.html.
ber of
eating
p- and void plot_dislocations(Plot3D *p3, double pemin, double pemax) { class PlotDisl(Image3D): # Inherits from a generic 3D image class
'Utpﬁt' Particle *p = Particles; def__init_ (self,min,max):
1 fully int i, npart; Image3D.__init_(seff, ...
e int  color; seff.pemin = min
‘ari:za— npart = count_particles(); self pemax = max
:t‘; A ?s for (1=0;i <npart; ir+p++) { def draw(self):
ystem, i((p->pe >= pemin) && (p->pe <= pemax)) { seff.newplot() ;
€ user ... compute color value .. plot_dlslocanons(self.ps,self.pemln,self.pemax)
fsuch /* Plotit using our C graphics library */ Common operations such as rotation, translation, and
vorks, PIOI3D_plot(p3,p->1.x,p->1.y,0-1.2,color): scaling are found in the generic Image3D class, and so we get
18 in a } R e Y f them for free through inheritance. Finally, to use our new
} image, a user can issue commands such as the following:
l)l;?r(l)% } >>> p = PlotDisl(-7,-5) E Createla new image
me in Given a data structure corresponding to a three-dimen- 23 pro(ds) #Flotate_ltdown
atoms sional plot and some clipping values, this function simply g p.zoom(EOO) #.c00mip oy
lattice scans through all the particles and displays only those of R AR =63 #Change ol b vale
ing us interest (see “Ductile Failure and Dislocation Generation in >>>p-show() # Regenerate the image
func- Copper,” this page). By using SWIG, we can make the function Admittedly, this is only giving a hint of what is possible.
dlook available in Python. Now, to define a new type of “image” for The underlying C code for making a plot remains simple and
plotting dislocations, we proceed as follows (in Python): uses built-in graphics-library functions. At a higher level,
COMPUTERS IN PHYSICS, VOL. [1, NO. 3, MAY/JUN 1997 235




LARGE-SCALE MD

Figure 1. Molecular-dynamics simulation in SPaSM investigates an
imploding cylinder of an fee crystal. At the top is a full view in which atoms
are colored according to the value of their potential energy; at the bottom
is adetail of the region where the lattice has melted locally. Different views
like these are easily generated with the graphics subsystem.

236 COMPUTERS IN PHYSICS, VOL. 11, NO. 3, MAY/JUN 1997

each “image” has several dozen methods
for performing rotation, scaling, transla-
tion, and clipping. All these methods are
inherited automatically when a new image
is created; a user never has to worry about
the implementation. Because various dis-
play modes are handled by the library,
images can be displayed on a user’s screen,
dumped to disk, or transmitted over the
Internet. In our current system there are
about ten different types of images.
These images can be generated in paral-
lel with a running simulation or during
postprocessing (see Fig. 1 for an example).

Currently, we are using this system
for managing data from simulations in-
volving millions to hundreds of millions
of atoms. This approach has proven to be
highly effective. For example, generat-
ing and displaying an image generated
from a simulation of 100 million atoms
ona 512-processor CM-5 takes approxi-
mately 20 s over a standard Internet con-
nection. In contrast, generating such an
image locally would require transferring
the dataset, loading it into a high-per-
formance workstation, and rendering
it—a process that could take several
hours to complete for a single dataset.
Although the system does not attempt to
be highly interactive, we have found it to
be completely usable on virtually any
size of dataset and from any kind of workstation.

Network programming and remote data analysis

The explosive growth of the Internet has brought signifi-
cant interest in adding network capabilities to scientific ap-
plications. By using scripting languages, we can provide these
capabilities for free. All the major scripting languages are
used heavily in Internet-based applications and provide built-
in support for a variety of network-programming protocols.
To illustrate the networking capabilities, we can write a very
simple Python loop to run a molecular-dynamics simulation
and poll a socket for connections from a World Wide Web
client. When a connection is received, we simply send a
simple status message back to the client.

from socket import *
from select import *
sock = socket(AF _INET,SOCK_STREAM)

def run(nsteps):
for i in range(0,nsteps):
integrate_adv_coord(Dt)
boundary_periodic()

# Do the MD step

#Look for an incoming connection
(rw.e) = select([sock],[],[1,0)
forsinr:




client = s.accept()[0]

by o | Whats oot Handbss | WetSemch| HotBireety| setiwars |

header = client.recv(2048)
print'Received a connection’

client:send(*HTTP/1.0 200 \n")
client.send(“Content-type:

texthtmhn\n®)

client.send(*'m now at timestep ” + e
str(i) + “n")

... send additional data ...

client.close()

Now we can start a long-running
simulation and check on its progress by
simply running a Web browser and con-
necting to the appropriate port on the
machine. When coupled with the visu-
alization system, the physics code is
able to serve images and other content
on demand. Surprisingly, this is easily

)

BT97shasr q1f

What's Hew | Whal's Cool| Handbsok | Net Search | mniqu,i Sofware

accomplished even if there is no con-
ventional Web server running on the
machine—the physics code itself is act-
ing a simple Web server. While such a
scheme could have been written in C, using a scripting lan-
guage only required one half day of effort. Figure 2 shows the
result of a typical Web-browser query for a running molecu-
lar-dynamics simulation.

a)

Performance concerns

One concern about using scripting languages is their
impact on overall performance. It is certainly true that such
languages are significantly slower than C or Fortran. How-
ever, it is important to emphasize that all the computationally
demanding functionality in our system is still implemented in
C. The scripting language provides structure and organiza-
tion, and its use incurs little performance penalty, as con-
firmed by the timings shown in the table, which were taken
from a recent simulation. The timings are for a simulation
written entirely in C and for the same C simulation but with
the outer loop written in Python instead. The observed 0.2%
performance penalty is of little concern.

Despite the potential for some performance penalties, we
feel that the scripting-language approach is sound and has
allowed us to solve problems faster than before. No matter
what computational improvements are made. time to solution
is the most important measure, and high-level scripting lan-
guages have reduced this time significantly.

Table. Wrapping a C program in a Python outer loop adds
convenience, organization, and structure at little perform-
ance cost.

Execution time (s)
Simulated atoms ‘

per processor | C ‘ C with Python
T 98.7 L e
45000 314.1 314.8
180000 | 1317.1 1319.0

b) |

Figure 2. We query a running simulation from a Web browser. (a) The user is
presented with a summary page indicating the status of the current simulation.
(b) A detailed view shows the shear stress generated behind a propagating shock
wave in an fec crystal.

Grand Unification Theory?

The adoption of common scripting languages as the
interface to physics codes brings a huge variety of benefits.
The procedure provides a flexible user interface for control-
ling complex simulations. Programmers can access built-in
modules and system services of a particular scripting lan-
guage. These include sockets, file handling, and more. In
addition, there are third-party modules and external packages
for image processing and database access. Most scripting
languages also provide toolkits such as Tk for graphical-user-
interface development. In short, what starts out as a simple
physics code can be transformed into a software package pos-
sessing a substantial level of functionality—most of which
comes for free. Throughout this process, the integrity of the
physics code is maintained: it remains essentially unchanged
and simple to manage. We believe that this is a computational
model for physics research that is highly effective and works.

A revolutionary improvement

We have been using this approach for approximately two

COMPUTERS IN PHYSICS, VOL. 11, NO. 3, MAY/JUN 1997

237




‘LARGE-SCALE MD

years, and it has revolutionized the way in which we perform
physics calculations. By integrating various components, we
have found it significantly easier to analyze and visualize the
results of large simulations. The analysis and visualization are
now done on the same large multiprocessor systems that run
the simulation. Using the network capabilities of scripting
languages, we have developed a collection of simple yet
highly effective tools for examining data from ordinary ma-
chines and over slow network connections. (In fact, there is
very little overall performance penalty for using the system
over a standard Internet connection rather than over a high-
speed FDDI network connection.) Finally, this approach has
given us a flexibility: The system is easy to modify, allows
sophisticated debugging, and provides the expressional
power that computational physicists demand.

This approach has also provided a number of benefits that
are not immediately obvious. Our code has evolved into
something more modular, reliable, and smaller, and the pro-
gram now functions in an event-driven fashion.

The modular nature of a scripting-language approach
encourages, but does not enforce, modular programming
techniques. We were able to use scripting languages with a
nearly unmodified version of our original molecular-dynam-
ics code, but with time, the code has become more modular
and well-packaged. This in turn has resulted in a nearly 25%
reduction in code size.

The use of a scripting language has turned our sequential
program into an event-driven program. Rather than having a
fixed sequence of operations, users now may issue commands
at any time and in any order. To manage this behavior effec-
tively, many portions of the code have been slowly modified
to make it more reliable, bug-free, and stable; these modifi-
cations have been primarily in the form of checks that make
sure it is safe to proceed.

Finally, we would like to emphasize the point that all
these features have not come at the expense of added com-
plexity. In fact, the code can still be compiled with a main
program and no user interface, just as was the case before we
added the scripting-language interface.

Acknowledgments

We would like to acknowledge our collaborators, Shujia
Zhou, Brad Holian, and Niels Grenbech Jensen of Los
Alamos National Laboratory, Tim Germann at the University
of California at Berkeley, Pablo Tamayo from Thinking Ma-
chines Corp., and Bill Kerr at Wake Forest University. We
would also like to acknowledge Paul Dubois and Brian Yang
at Lawrence Livermore National Laboratory, the Scientific
Computing and Imaging Group at the University of Utah, and
the Cornell Theory Center for many interesting discussions
and support. Development of the SPaSM code has been under
the auspices of the United States Department of Energy.
Many of the computations have been performed on the CM-5
and Cray T3D in the Advanced Computing Laboratory at Los
Alamos National Laboratory.

References
1. D. M. Beazley and P. S. Lomdahl, Parallel Computing
20, 173-195 (1994).

238 COMPUTERS IN PHYSICS, VOL. 11, NO. 3, MAY/JUN 1997

10.

il

13:

. P. S. Lomdahl, P. Tamayo, N. Grenbech-Jensen, and D.
M. Beazley, “50 Gflops Molecular Dynamics on the
Connection Machine 5,” Proceedings of Supercom-
puting 93 (IEEE Computer Society Press, Los Alamitos,

CA, 1993), pp. 520-527.

D. M. Beazley, P. S. Lomdahl, N. Grenbech-Jensen, R.

Giles, and P. Tamayo, “Parallel Algorithms for Short-

Range Molecular Dynamics,” in World Scientific’s An-

nual Reviews in Computational Physics 3, 119-175

(1996).

. P. Dubois, Comput. Phys. 10, 359 (1996); T. Yang, P.

Dubois, and Z. Motteler, “Building a Programmable

Interface for Physics Codes Using Numeric Python,”

Proceedings of the 4th International Python Conference

(Lawrence Livermore National Laboratory, June 3-6,

1996).

J. K. Ousterhout, Tcl and the Tk Toolkit (Addison-

Wesley, Reading, MA, 1994).

Mark Lutz, Programming Python (O’Reilly & Associ-

ates, Sebastopol, CA, 1996).

. Guido van Rossum and Jelke de Boer, “Interactively

Testing Remote Servers Using the Python Programming

Language,” CWI Quarterly 4, 283-303 (1991).

R. Schwartz and L. Wall, Programming Perl (O’Reilly

& Associates, Sebastopol, CA, 1994).

P. Dubois, K. Hinsen, and J. Hugunin, Comput. Phys. 10,

262-267 (1996).

D. M. Beazley, “SWIG: An Easy to Use Tool for Inte-

grating Scripting Languages with C and C++,” Proceed-

ings of the Fourth Annual Tcl/Tk Workshop '96,

Monterey, California, July 1013, 1996 (USENIX Asso-

ciation, Berkeley, CA 1996), pp. 129-139.

D. M. Beazley and P. S. Lomdahl, “A Practical Approach

to Portability and Performance Problems on Massively

Parallel Supercomputers,” in Proceedings of the Work-

shop on Debugging and Tuning for Parallel Computer

Systems, Chatham, MA, 1994 (IEEE Computer Society

Press, Los Alamitos, CA, 1996), pp. 337-351.

. P. S. Lomdahl and D. M. Beazley, “Multi-Million Parti-

cle Molecular Dynamics on MPPs,” Second Interna-

tional Workshop, PARA *95 (Lyngby, Denmark, August

1995), in Lecture Notes in Computer Science 1041, ed-

ited by J. Dongarra ef al. (Springer-Verlag, New York,

1996), pp. 391-407.

D. M. Beazley and P. S. Lomdahl, “Lightweight Compu-

tational Steering of Very Large Scale Molecular Dynam-

ics Simulations,” Proceedings of Supercomputing 96

(CD-ROM, IEEE Computer Society Press, Los Alami-

tos, CA, 1996).

. D. M. Beazley and P. S. Lomdahl, “Extensible Message
Passing Application Development and Debugging with
Python,” to appear in proceedings of [PPS’97, Geneva,
Switzerland, LA-UR-96-3386.

. J. Nordiek, M. Moseler, and H. Haberland, “Energetic
Impacts of Cu Clusters on Cu Surfaces,” in Proceedings
of COSIRES '96, edited by R. Webb, to appear in J. Rad.
Effect and Defects in Solids (1997).

. S. I. Zhou, D. M. Beazley, P. S. Lomdahl, and B. L.
Holian, Phys. Rev. Lett. 78, 479 (1997).




	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

