
Copyright (C) 2008, http://www.dabeaz.com 1-

Swig Master Class
David "Mr. Swig" Beazley
http://www.dabeaz.com

Presented at PyCon'2008

1

Copyright (C) 2008, http://www.dabeaz.com 1-

An Introduction

2

• Perhaps you've heard about this little Python-
extension building tool called "Swig" and
wondered what it was all about

• Maybe you used it on some simple code and
were a little "surprised" that it worked.

• Maybe you tried to use it for something more
complicated and were a) Overwhelmed, b)
Confused, c) Horrified, or d) All of the above.

Copyright (C) 2008, http://www.dabeaz.com 1-

Swig Essentials

3

• The official website:

http://www.swig.org

• The short history

• First implementation (summer, 1995)

• First release (Feb. 1996)

• First paper (June 1996, Python Workshop)

• And now thousands of users...

Copyright (C) 2008, http://www.dabeaz.com 1-

About Me

4

• I am the original creator of Swig

• I wanted to make it easy for scientists to put
scripting interfaces on physics software

• Have since worked on a variety of other
projects (parsing tools, debuggers, etc.)

• I am still involved with Swig, but am coming
off of a bit of sabbatical from working on it.

Copyright (C) 2008, http://www.dabeaz.com 1-

About Swig

5

• Swig has been around for many years and has
been actively maintained by a large group of
developers

• However, its complexity has grown along with
its capabilities

• Although it is still easy to use on "simple"
projects, more advanced tasks can (regrettably)
involve a rather steep learning curve.

Copyright (C) 2008, http://www.dabeaz.com 1-

About this Class

6

• How Swig is put together

• How Swig thinks about extension building

• How Swig code generation works

• How various customization features work

Copyright (C) 2008, http://www.dabeaz.com 1-

Disclaimers

7

• This is an advanced course

• I will assume the following:

• You can write Python programs

• You can write C/C++ programs

• You have made extensions to Python
before (by hand or with a tool)

Copyright (C) 2008, http://www.dabeaz.com 1-

Disclaimers

8

• This class is about important concepts and
the "big picture."

• This isn't a Swig reference manual or even a
detailed tutorial for beginners.

• But, the Swig reference manual will (hopefully)
make a lot more sense after this class

Copyright (C) 2008, http://www.dabeaz.com 1-

No Advocacy!

9

• This is not a Swig sales pitch

• It's a look inside to see how Swig works

• Mostly, I want to demystify parts of it

Copyright (C) 2008, http://www.dabeaz.com 1-

Format

10

• Course is organized as a discussion with
some live examples/demos

• You can follow along, but you will need
Python, Swig, C/C++ installed on your system

• I'm not going to talk about how to configure
your environment.

• Please stop me to ask questions!

Copyright (C) 2008, http://www.dabeaz.com 1-

Part I

11

Python Extension Building and Swig

Copyright (C) 2008, http://www.dabeaz.com 1-

Python Extensions

• Python can be extended with C functions

12

/* A simple C function */
double square(double x) {
 return x*x;
}

• To do this, you have to write a wrapper
PyObject *py_square(PyObject *self, PyObject *args) {
 double x, result;
 if (!PyArg_ParseTuple(self,"d",&x)) {
 return NULL;
 }
 result = square(x);
 return Py_BuildValue("d",result);
}

Copyright (C) 2008, http://www.dabeaz.com 1-

Wrapper Functions

• The wrapper serves as glue

13

• It converts values from Python to a low-level
representation that C can work with

• It converts results from C back into Python

Python

C/C++

Wrapper

Copyright (C) 2008, http://www.dabeaz.com 1-

Extension Modules

• An extension module is just a collection of
wrapper functions

• Additional initialization code sets it up

14

/* Method table for extension module */
static PyMethodDef extmethods[] = {
 {"square", py_square, METH_VARARGS},
 {NULL,NULL}
}

/* initialization function */
void initext() {
 Py_InitModule("ext",extmethods);
}

Copyright (C) 2008, http://www.dabeaz.com 1-

Packaging of Extensions

• Extension modules usually compiled into
shared libraries or DLLs (ext.so, ext.pyd, etc.)

• The import statement knows to look for such
files (along with .py, .pyc, and .pyo files)

15

>>> import ext
>>> ext.square(4)
16.0
>>>

• There are many details related to the
compilation of these modules (but, that's an
entirely different tutorial)

Copyright (C) 2008, http://www.dabeaz.com 1-

The Problem

• Writing extension code by hand is annoying

• Extremely tedious and error prone

• Difficult to maintain

• Not at all obvious when you start getting into
gnarly C/C++ code (structs, classes, arrays,
pointers, templates, etc.)

16

Copyright (C) 2008, http://www.dabeaz.com 1-

Extension Tools
• Python has a large number of tools that aim

to "simplify" the extension building process

• Boost.Python

• ctypes

• SIP

• pyfort

• Pyrex

• Swig

• Apologies to anyone I left out

17

Copyright (C) 2008, http://www.dabeaz.com 1-

Swig

• Swig generates wrappers from C++ headers

• Basic idea : You just list everything you want in
your extension module using normal C-style
declarations

• Swig parses those declarations and creates an
output file of C/C++ code which you compile
to make your module

18

Copyright (C) 2008, http://www.dabeaz.com 1-

Sample Swig Interface
• Here is a sample Swig specification:

19

%module sample
%{
#include "myheader.h"
#include "otherheader.h"
%}

#define PI 3.14159;
int foo(int x, int y);
double bar(const char *s);

struct Spam {
 int a, b;
};

Copyright (C) 2008, http://www.dabeaz.com 1-

Sample Swig Interface
• Here is a sample Swig specification:

20

%module sample
%{
#include "myheader.h"
#include "otherheader.h"
%}

#define PI 3.14159;
int foo(int x, int y);
double bar(const char *s);

struct Spam {
 int a, b;
};

Preamble.

Gives the module name and
provides declarations needed
to get the code to compile
(usually header files).

Copyright (C) 2008, http://www.dabeaz.com 1-

Sample Swig Interface
• Here is a sample Swig specification:

21

%module sample
%{
#include "myheader.h"
#include "otherheader.h"
%}

#define PI 3.14159;
int foo(int x, int y);
double bar(const char *s);

struct Spam {
 int a, b;
};

Declarations.

List everything that you
want in the extension
module.

Copyright (C) 2008, http://www.dabeaz.com 1-

Running Swig

• Swig is a command-line tool

22

shell % swig -python sample.i
shell %

• Unless there are errors, it is silent

• Invocation of Swig may be hidden away.

• For instance, distutils/setuptools runs Swig
automatically if you list a .i file as a source.

Copyright (C) 2008, http://www.dabeaz.com 1-

Swig Output

• As output, Swig produces two files

23

shell % ls
sample.i sample_wrap.c sample.py
shell %

• The _wrap.c file is C code that must be
compiled in a shared library

• The .py file is Python support code that serves
as a front-end to the low-level C module

• Users import the .py file

Copyright (C) 2008, http://www.dabeaz.com 1-

Building Swig Extensions

• Swig extension modules always come in pairs

24

sample_wrap.c

sample.i

swig

sample.py

cc

_sample.pyd

These two files are the "module"

Copyright (C) 2008, http://www.dabeaz.com 1-

Dual-Module Architecture

• Swig uses a dual-module architecture where
some code is in C and other code is in Python

25

sample.py

_sample.pyd

user

• This same approach is used by Python itself
(socket.py, _socket.pyd, thread.pyd, threading.py)

imports

imports

Copyright (C) 2008, http://www.dabeaz.com 1-

Using a Swig Module
• Usually no big surprises

26

>>> import sample
>>> sample.foo(73,37)
42
>>> sample.PI
3.1415926
>>> x = sample.bar("123.45")
>>> s = sample.Spam()
>>> s.a = 1
>>> s.b = 2
>>> print s.a + s.b
3
>>>

• Everything in the declaration list is available and
"works" as you would expect

Copyright (C) 2008, http://www.dabeaz.com 1-

General Philosophy
• The main goal of Swig is to make a “natural”

interface to C/C++ code

27

%module sample

class Spam {
public:
 int a,b;
 int bar(int);
 static foo(void);
};

>>> import sample
>>> s = sample.Spam()
>>> s.a = 42
>>> x = s.bar(37)
>>> sample.Spam.foo()
>>>

• A very large subset of C/C++ is supported

• Use in Python is the same as use in C++

Copyright (C) 2008, http://www.dabeaz.com 1-

Swig-generated Code

• Swig generates the same kind of code that you
would normally write by hand

• It creates wrapper functions

• It creates a module initialization function

• It packages everything up into a file that you
can compile into a extension module

28

Copyright (C) 2008, http://www.dabeaz.com 1-

The Horror, The Horror

• When people first come to Swig, they might
look at the output files and have their head
explode.

• That code is not meant to be read.

• However, there are a number of critical things
going on in the output...

29

Copyright (C) 2008, http://www.dabeaz.com 1-

Compiler Dependencies

• Output includes a lot of compiler switches,
macros, and other definitions for portability

30

#ifndef SWIGEXPORT
if defined(_WIN32) || defined(__WIN32__) || defined(__CYGWIN__)
if defined(STATIC_LINKED)
define SWIGEXPORT
else
define SWIGEXPORT __declspec(dllexport)
endif
else
if defined(__GNUC__) && defined(GCC_HASCLASSVISIBILITY)
define SWIGEXPORT __attribute__ ((visibility("default")))
else
define SWIGEXPORT
endif
endif
#endif

Copyright (C) 2008, http://www.dabeaz.com 1-

Runtime Support

• The wrapper code also includes a runtime
library of about 3000 lines of code

• Library functions, macros, etc.

• This is needed to deal with more complex
aspects of extension modules (especially C++)

• A critical part of how modules are packaged

31

Copyright (C) 2008, http://www.dabeaz.com 1-

Self-Containment

• Many people don't realize that the output of
Swig is identical on all platforms

• The wrapper code has no third-party
dependencies and does not rely on any part of
a Swig installation (headers or libraries)

• Code generated by Swig can be distributed
independently from Swig

• End users don't need Swig installed

32

Copyright (C) 2008, http://www.dabeaz.com 1-

Part 2

33

Extension Building and Type Systems

Copyright (C) 2008, http://www.dabeaz.com 1-

The Extension Problem

• The problem of building extension modules
is not new---people have been doing this
from the beginning days of Python.

• What is the true nature of this problem?

• Is it simply a code generation problem?

• Is it some kind of text “parsing” problem?

34

Copyright (C) 2008, http://www.dabeaz.com 1-

Concept : Types

• Programming languages operate on different
kinds of data.

• Data has a “type” associated with it

35

/* C++ */

int a;
double b;
char *c;

Python

a = 37
b = 3.14159
c = "Hello"

• In C, variables have explicit types

• In Python, values have an implicit type

Copyright (C) 2008, http://www.dabeaz.com 1-

Concept : Type Systems

• There are rules that dictate what you can
and can not do with various types

36

x = 42 + "Hello" # TypeError

• These rules make up the "type system"

• In Python, checking occurs at run-time
(dynamic typing)

• In C++, checking occurs in the compiler
(static typing)

Copyright (C) 2008, http://www.dabeaz.com 1-

Type System Elements
• The type system is more than just the

representation of data

• Example : Mutability of data

37

const int x = 42;
...
x = 37; // Error. x is "const"

• Example: Inheritance in OO
class Foo {};
class Bar : public Foo {};
class Spam {};

Foo *a = new Foo(); // Ok
Foo *b = new Bar(); // Ok (Bar is a Foo)
Foo *c = new Spam(); // Error (Spam is not a Foo)

Copyright (C) 2008, http://www.dabeaz.com 1-

Extension Building

• Extensions are mainly a type-system problem

• When you write "wrappers", you are creating
glue that sits between two type systems

38

char, short, int,
long, float,
double, char *,
const, volatile,
struct { ... },
class { ... },
template,namespace
...

int, long, float,
str, unicode,
list, dict,
tuple,class,
...

C++ Python

wrapper

Copyright (C) 2008, http://www.dabeaz.com 1-

This Makes Sense

• When you write Python extension code,
about 95% of the time, you're futzing around
with various forms of type conversion

• Converting arguments from Python to C

• Converting results from C to Python

• It's clearly a problem that is at least strongly
related to type systems.

39

Copyright (C) 2008, http://www.dabeaz.com 1-

Extension Building Tools

• If you start using extension building tools,
much of your time is also oriented around
type handling

• It just looks different than if you're writing
code by hand.

• Example: Using the ctypes module

40

Copyright (C) 2008, http://www.dabeaz.com 1-

ctypes Example
• A C function

41

>>> ext.half.argtypes = (ctypes.c_double,)
>>> ext.half.restype = ctypes.c_double
>>> ext.half(5)
2.5
>>>

>>> import ctypes
>>> ext = ctypes.cdll.LoadLibrary("./libext.so")
>>> ext.half(5)
-1079032536
>>>

double half(double x) { return x/2; }

• Loading a DLL

• Fixing the types

Copyright (C) 2008, http://www.dabeaz.com 1-

The Problem

• Understanding the type system is a lot
harder than it looks

• There's much more to it than just
converting data back and forth

• Example : How many C/C++ programmers
would claim that they really understand the
C++ type system?

42

Copyright (C) 2008, http://www.dabeaz.com 1-

C Type System
• Example: Explain the difference

43

const char *s;
char *const s;
const char *const s;

• Example: What is the following?

void (*s(int, void (*)(int)))(int);

• Example: Explain the difference

int **x;
int y[10][10];

Copyright (C) 2008, http://www.dabeaz.com 1-

C++ Type System

44

• Example: Explain this code

template<int N> struct F {
 enum { value = N*F<N-1>::value };
};
template<> struct F<0> {
 enum { value = 1 };
};

int x = F<4>::value;

Copyright (C) 2008, http://www.dabeaz.com 1-

Part 3

45

Inside the C/C++ Type System

Copyright (C) 2008, http://www.dabeaz.com 1-

Primitive C Types
• C is based on a primitive set of types

46

Byte char 8 bits

Integer int Typically 32 bits

Floating
point

float
double

32 bit single precision
64 bit double precision

• These types are a direct reflection of low-level
computer hardware (the integer/floating point
units of a microprocessor).

Copyright (C) 2008, http://www.dabeaz.com 1-

long/short Modifiers
• Integers can have "short" and "long" modifiers

added to them to get different word sizes

47

short int # 16 bit integer
long int # 32 or 64 bit integer
long long int # 64 bit integer (support varies)

• Since the "int" is redundant, it is often dropped
short # 16 bit integer
long # 32 or 64 bit integer
long long # 64 bit integer (support varies)

• long can also be applied to double (sometimes)
long double # 128 quad-precision float

Copyright (C) 2008, http://www.dabeaz.com 1-

Signed/Unsigned Modifiers
• Integer types can also have a sign modifier

48

• This modifier only provides information to the
compiler on how the underlying data should be
interpreted.

signed char, unsigned char
signed short, unsigned short
signed int, unsigned int
signed long, unsigned long

 (bunch of bits)
[1111111011101111] signed short -> -275
[1111111011101111] unsigned short -> 65261

• No effect on the underlying data representation

Copyright (C) 2008, http://www.dabeaz.com 1-

Simple Datatypes
• If you take the primitive types and associated

modifiers you get a complete list of the simple
C types that are used to represent data.

49

 char // 8-bit signed int
unsigned char // 8-bit unsigned int
short // 16-bit signed int
unsigned short // 16-bit unsigned int
int // 32-bit signed int
unsigned int // 32-bit unsigned int
long // 32/64-bit signed int
unsigned long // 32/64-bit unsigned int
long long // 64-bit signed int
unsigned long long // 64-bit unsigned int
float // 32-bit single precision
double // 64-bit double precision

Copyright (C) 2008, http://www.dabeaz.com 1-

Python and C Data
• The Python C API mirrors this set of types

(PyArg_ParseTuple() conversion codes)

50

Format Python Type C Datatype
------ ------------------------ ------------------------
"c" String char
"b" Integer char
"B" Integer unsigned char
"h" Integer short
"H" Integer unsigned short
"i" Integer int
"I" Integer unsigned int
"l" Integer long
"k" Integer unsigned long
"L" Integer long long
"K" Integer unsigned long long
"f" Float float
"d" Float double

Copyright (C) 2008, http://www.dabeaz.com 1-

Type Declarators

• C has more complicated kinds of types

• For example: pointers, arrays, and qualified types

51

int * // Pointer to an int
int [40] // Array of 40 integers
int *[40] // Array of 40 pointers to integers
int *const // Pointer to a constant int
int *const [40] // Array of 40 pointers to const int

• These are "constructed" by taking a basic type
and applying a sequence of "declarators" to it

Copyright (C) 2008, http://www.dabeaz.com 1-

Commentary

• The syntax for declarators is mind-boggling

52

void (*s(int, void (*)(int)))(int);
int *(*x)[10][20];

• That's almost impossible to read

• They are much easier to understand if you write
them out as a sequence

Copyright (C) 2008, http://www.dabeaz.com 1-

C Declarator Operators

• *. Pointer to something

• [N]. An array of N items

• qualifier. A qualifier (const, volatile)

• (args). A function taking args

53

• There are four basic declarators

Copyright (C) 2008, http://www.dabeaz.com 1-

C Declarator Operators
• You can rewrite C types as a sequence that

more easily shows its construction...

54

int int
int * *.int
int [40] [40].int
int *[40] [40].*.int
const int * *.const.int
int *(*)[10][20] *.[10].[20].*.int
int (*)(int *,int) *.(*.int,int).int

• Examples:

• Read the alternative syntax left to right

Copyright (C) 2008, http://www.dabeaz.com 1-

Declarations/Statements
• In C, there is a distinction between statements

and declarations

• Statements make up the implementation

55

x = a + b;
foo(x,y);
for (i = 0; i < 100; i++) { ... }

• Declarations specify type information

double x;
double a,b;
void foo(double, int);

Copyright (C) 2008, http://www.dabeaz.com 1-

Declarations/Statements

• For extension modules, we do not care about
the implementation

• We are only interested in declarations

• And only those declarations that are visible

• The public interface to C/C++ library code

• So, let's look further at declarations...

56

Copyright (C) 2008, http://www.dabeaz.com 1-

Declarations

• A declaration binds a name and storage
specifier to a type

57

int a,*b;
extern int foo(int x, int y);
typedef int Integer;
static void bar(int x);

• Name : A valid C identifier

• Storage : extern, static, typedef, virtual, etc.

Copyright (C) 2008, http://www.dabeaz.com 1-

Declaration Tables

58

• Declarations are easily stored in a table

Name storage type
'a' None int
'b' None *.int
'foo' extern (int,int).int
'Integer' typedef int
'bar' static (int).void
...

int a,*b;
extern int foo(int x, int y);
typedef int Integer;
static void bar(int x);

Copyright (C) 2008, http://www.dabeaz.com 1-

Namespaces

• There is always a global declaration table (::)

• However, declarations can also appear in

• Structures and unions

• C++ classes

• C++ namespaces

• Each of these is just a named declaration table

59

Copyright (C) 2008, http://www.dabeaz.com 1-

Namespaces
• Example:

60

class Spam {
public:
 int a,b;
 virtual int bar(int);
 static int foo(void);
};

• Class declaration table

 Name storage type
 'a' None int
 'b' None int
 'bar' virtual (int).int
 'foo' static (void).int

Spam

Copyright (C) 2008, http://www.dabeaz.com 1-

Namespaces

• The tricky bit with namespaces is that different
namespaces can be nested and linked together

• Inner namespaces see declarations in outer
namespaces

• Class namespaces see declarations in
namespace for parent class (inheritance)

• All of this gets implemented as a tree

61

Copyright (C) 2008, http://www.dabeaz.com 1-

C++ Namespace Example

62

decls
class A { decls } ;
namespace B {
 decls
 class C { decls };
 class D : public C { decls };
}

decls
decls

decls

:: A

B

decls

decls

C

D publicNote: The arrows
indicate "visibility"

of declarations

Copyright (C) 2008, http://www.dabeaz.com 1-

Overloading
• C++ allows overloaded functions/methods

63

int foo(int x);
int foo(double x);
int foo(int x, int y);
void foo(char *s, int n);

• Each func declaration must have unique args

 Name storage type
 'foo' None (int).int
 'foo' None (double).int
 'foo' None (int,int).int
 'foo' None (*.char,int).void

• The return type is irrelevant

Copyright (C) 2008, http://www.dabeaz.com 1-

Templates
• C++ allows a declaration to be parameterized

64

template<parms> decl;

• Parameters are specified as a list of types
template<class T> decl;
template<int n> decl;
template<class T, int n> decl;
...

• To refer to a template, you use the declaration
name with a set of parameters

name<args>

Copyright (C) 2008, http://www.dabeaz.com 1-

Template Implementation
• Implementing templates is slightly tricky (sic)

• It's a declaration with arguments, so just add an
extra table column for that

65

int a;
int foo(int x, int *y);
template<class T> T max(T a, T b);
...

Name storage template type
'a' None None int
'foo' None None (int,*.int).int
'max' None (class T) (T,T).T
...

Copyright (C) 2008, http://www.dabeaz.com 1-

Template Implementation

• Identifiers may also carry arguments

66

int a;
int foo(int x, int *y);
template<class T> T max(T a, T b);
vector<int> blah(vector<int> *x, int n);

Name storage template type
'a' None None int
'foo' None None (int,*.int).int
'max' None (class T) (T,T).T
'blah' None None (*.vector<int>,int).vector<int>

• Nothing changes in the table, just horrid names

Copyright (C) 2008, http://www.dabeaz.com 1-

Putting it All Together

67

• The key to everything is knowing that C/C++
header files basically just define a bunch of
declaration tables

• These tables have a very simple structure (even
with features such as C++ templates)

• If you can assemble the declaration tables, you
can generate wrappers

Copyright (C) 2008, http://www.dabeaz.com 1-

Seque to Swig

68

• This is essentially how Swig works

• Parse a C++ header file

• Create declaration tables

• Manipulate the declaration tables

• Generate wrapper code

Copyright (C) 2008, http://www.dabeaz.com 1-

Swig Architecture

69

• Swig is a multi-pass compiler

Preprocessor

C/C++ Parser

Code Generator

sample.i

Analysis Modules

Full parse tree

Annotated parse tree

Copyright (C) 2008, http://www.dabeaz.com 1-

Discussion

70

• The phases build upon each other

• Each phase has various customization
features that can be applied to control
processing

• These are controlled by special directives
which are always prefixed by %

• Let's look at each phase...

Copyright (C) 2008, http://www.dabeaz.com 1-

Part 4

71

The Preprocessor

Copyright (C) 2008, http://www.dabeaz.com 1-

Preprocessor

72

• There is a full ANSI C preprocessor

• Supports file includes, conditional compilation,
macro expansion, variadic macros, etc.

• Also implements a number of Swig-specific
extensions related to file inclusion and macros

Copyright (C) 2008, http://www.dabeaz.com 1-

Preprocessing

73

• The preprocessor is the primary entry point

• Here's what happens when you run Swig

% swig -python sample.i

%include <swig.swg>

%include <python.swg>

%include "sample.i"

Preprocessor

The first two files are part of
Swig and contain definitions
needed to process the .i file

that follows

expands to...

Copyright (C) 2008, http://www.dabeaz.com 1-

Digression

74

• The previous slide explains the cryptic error
you get if you don't install Swig properly

% swig -python sample.i

%include <swig.swg>

%include <python.swg>

%include "sample.i"

:1: Error: Unable to find 'swig.swg'
:3: Error: Unable to find 'python.swg' (oops!)

Copyright (C) 2008, http://www.dabeaz.com 1-

Viewing Preprocessed Text

75

• The result of preprocessed input is easy to view

% swig -E -python sample.i

• This will show you the exact input that actually
gets fed into the Swig parser

• Some of this will be rather cryptic, but the goal
is to make life easier for the parser

Copyright (C) 2008, http://www.dabeaz.com 1-

Preprocessor Extensions

76

• Swig makes the following extensions to the
normal C preprocessor

• A different set of file-inclusive directives

• Code literals

• Constant value detection

• Macro extensions

Copyright (C) 2008, http://www.dabeaz.com 1-

File Includes

77

• Swig uses its own file inclusion directives

• %include : Include a file for wrapping

%include "other.i"

• %import : Include for declarations only

%import "other.i"

• Rationale : Sometimes you want it wrapped and
sometimes you don't.

Copyright (C) 2008, http://www.dabeaz.com 1-

File Includes

78

• By default, Swig ignores all preprocessor
#include statements

• Rationale : Swig doesn't know what you want
to do with those files (so it plays safe)

• All of this can be controlled:

swig -I/new/include/dir # Add a search path
swig -importall # All #includes are %import
swig -includeall # All #includes are %include

Copyright (C) 2008, http://www.dabeaz.com 1-

Getting File Dependencies

79

• Listing the file dependencies : swig -M

% swig -python -M sample.i
sample_wrap.c: \
 /usr/local/share/swig/1.3.31/swig.swg \
 /usr/local/share/swig/1.3.31/swigwarnings.swg \
 /usr/local/share/swig/1.3.31/swigwarn.swg \
 /usr/local/share/swig/1.3.31/python/python.swg \
 /usr/local/share/swig/1.3.31/python/pymacros.swg \
 /usr/local/share/swig/1.3.31/typemaps/swigmacros.swg \
 /usr/local/share/swig/1.3.31/python/pyruntime.swg \
 /usr/local/share/swig/1.3.31/python/pyuserdir.swg \
 /usr/local/share/swig/1.3.31/python/pytypemaps.swg \
 /usr/local/share/swig/1.3.31/typemaps/fragments.swg \
...

• This will show you the files in the same order
as they are included and will be parsed

Copyright (C) 2008, http://www.dabeaz.com 1-

Code Literals

80

• Raw C/C++ code often has to pass through
the preprocessor so that it can go into the
wrapper output files

• The preprocessor ignores all code in %{..%}

%{
#include "myheader.h"
...
%}

Copyright (C) 2008, http://www.dabeaz.com 1-

Constant Value Detection

81

• C/C++ headers often use #define to denote
constants
#define PI 3.1415926
#define PI2 (PI/2)
#define LOGFILE "app.log"

• But macros are often used for other things

#define EXTERN extern

• The preprocessor uses a heuristic to try and
detect the constants for wrapping

Copyright (C) 2008, http://www.dabeaz.com 1-

Constant Value Detection

82

• Example:
%module simple.i

#define PI 3.1415926
#define PI2 (PI/2)
#define LOGFILE "app.log"
#define EXTERN extern

• swig -E simple.i
...
%constant PI = 3.1415926;
%constant PI2 = (3.1415926/2);
%constant LOGFILE = "app.log";

Copyright (C) 2008, http://www.dabeaz.com 1-

Swig Macros

83

• Swig also has its own macros that extend the
capabilities of the normal C preprocessor
// sample.i
%define %greet(who)
%echo "Hello " #who ", I'm afraid you can't do that"
%enddef

%greet(Dave)

• Example:

% swig -python sample.i
Hello Dave, I'm afraid you can't do that
%

Copyright (C) 2008, http://www.dabeaz.com 1-

Swig Macros

84

• The macro system is a critical part of Swig

• The macro system is used to reduce typing by
automatically generating large blocks of code

• For better or worse, a lot of Swig low-level
internals are heavily based on macros

Copyright (C) 2008, http://www.dabeaz.com 1-

Swig Macros

85

• Frankly, the macro system is frightening.

%define FACTORIAL(N)
#if N == 0
1
#else
(N)*FACTORIAL(N-1)
#endif
%enddef

int x = FACTORIAL(6); // 720

• Supports recursive preprocessing

• Macros can define other macros (yow!)

Copyright (C) 2008, http://www.dabeaz.com 1-

Part 5

86

The C++ Parser

Copyright (C) 2008, http://www.dabeaz.com 1-

Parsing in a Nutshell

87

• The parser constructs a full parse tree from
the input

• Each node in this tree is identified by a "tag"
that describes what it is

• These tags mimic the struct of the input file.

• You can easily view the tree structure

% swig -python -debug-tags sample.i
% swig -python -dump_tags sample.i

Copyright (C) 2008, http://www.dabeaz.com 1-

Viewing the Tree Structure

88

%module sample
%{
#include "myheader.h"
#include "otherheader.h"
%}

#define PI 3.14159
int foo(int x, int y);
double bar(const char *s);

struct Spam {
 int a, b;
};

% swig -python -debug-tags sample.i
 ...
 . top . include (sample.i:0)
 . top . include . module (sample.i:1)
 . top . include . insert (sample.i:5)
 . top . include . constant (sample.i:7)
 . top . include . cdecl (sample.i:8)
 . top . include . cdecl (sample.i:9)
 . top . include . class (sample.i:11)
 . top . include . class . cdecl (sample.i:12)
 . top . include . class . cdecl (sample.i:12)

Copyright (C) 2008, http://www.dabeaz.com 1-

Parse Tree Nodes

89

• All parse tree nodes are dictionaries

• They're not Python dictionaries, but virtually
identical---a mapping of keys (strings) to values

• The values are either numbers, strings, lists, or
other dictionaries

• The parse tree nodes are also easy to view

% swig -python -debug-module 1 sample.i
% swig -python -dump_parse_module sample.i

Copyright (C) 2008, http://www.dabeaz.com 1-

Viewing the Tree Nodes

90

% swig -python -debug-module 1 sample.i
...
+++ cdecl --
| sym:name - "bar"
| name - "bar"
| decl - "f(p.q(const).char)."
| parms - char const *
| kind - "function"
| type - "double"
| sym:symtab - 0x32db70
| sym:overname - "__SWIG_0"
|
...

double bar(const char *s);

There's a lot of information here...

Copyright (C) 2008, http://www.dabeaz.com 1-

Viewing the Tree Nodes

91

% swig -python -debug-module 1 sample.i
...
+++ cdecl --
| sym:name - "bar"
| name - "bar"
| decl - "f(p.q(const).char)."
| parms - char const *
| kind - "function"
| type - "double"
| sym:symtab - 0x32db70
| sym:overname - "__SWIG_0"
|
...

double bar(const char *s);

This is the node tag
(A C declaration)

Copyright (C) 2008, http://www.dabeaz.com 1-

Viewing the Tree Nodes

92

% swig -python -debug-module 1 sample.i
...
+++ cdecl --
| sym:name - "bar"
| name - "bar"
| decl - "f(p.q(const).char)."
| parms - char const *
| kind - "function"
| type - "double"
| sym:symtab - 0x32db70
| sym:overname - "__SWIG_0"
|
...

double bar(const char *s);

These attributes hold the
declaration name

name The name used in C
sym:name The name used in Python

Copyright (C) 2008, http://www.dabeaz.com 1-

Viewing the Tree Nodes

93

% swig -python -debug-module 1 sample.i
...
+++ cdecl --
| sym:name - "bar"
| name - "bar"
| decl - "f(p.q(const).char)."
| parms - char const *
| kind - "function"
| type - "double"
| sym:symtab - 0x32db70
| sym:overname - "__SWIG_0"
|
...

double bar(const char *s);

Declaration base type and
type operators

type The base type
decl Type operators

Copyright (C) 2008, http://www.dabeaz.com 1-

Type Syntax Explained

94

• Swig uses a similar representation of the
declarator operators we looked at earlier

p. *.
a(N). [N].
q(qualifiers). qualifiers.
f(parms). (parms).

• An Example:

 double bar(const char *);

 f(p.q(const).char).double

Copyright (C) 2008, http://www.dabeaz.com 1-

Viewing the Tree Nodes

95

% swig -python -debug-module 1 sample.i
...
+++ cdecl --
| sym:name - "bar"
| name - "bar"
| decl - "f(p.q(const).char)."
| parms - char const *
| kind - "function"
| type - "double"
| sym:symtab - 0x32db70
| sym:overname - "__SWIG_0"
|
...

double bar(const char *s);

Other fields have certain
information split out so that

later processing is easier

kind The kind of declaration
parms List of argument types

Copyright (C) 2008, http://www.dabeaz.com 1-

Different cdecl Types

96

% swig -python -debug-module 1 sample.i
...
+++ cdecl --
| sym:name - "bar"
| name - "bar"
| decl - "f(p.q(const).char)."
| parms - char const *
| kind - "function"
| type - "double"
|
+++ cdecl --
| sym:name - "spam"
| name - "spam"
| decl - ""
| kind - "variable"
| type - "int"

double bar(const char *s);

int spam;

Copyright (C) 2008, http://www.dabeaz.com 1-

Viewing the Tree Nodes

97

% swig -python -debug-module 1 sample.i
...
+++ cdecl --
| sym:name - "bar"
| name - "bar"
| decl - "f(p.q(const).char)."
| parms - char const *
| kind - "function"
| type - "double"
| sym:symtab - 0x32db70
| sym:overname - "__SWIG_0"
|
...

double bar(const char *s);

Symbol tables

sym:symtab is the (C++)
namespace where the
declaration lives.

sym:overname is related
to overloaded symbols

Copyright (C) 2008, http://www.dabeaz.com 1-

Parsing Directives

98

• There are two important directives that relate
to the construction of the parse tree

• %extend : Class/structure extension

• %template : Template instantiation

Copyright (C) 2008, http://www.dabeaz.com 1-

%extend Directive

99

• Extends a class with additional declarations
%extend Spam {
 void set(int a, int b) { /* Added method */
 $self->a = a;
 $self->b = b;
 }
};
...

struct Spam {
 int a, b;
};

• The purpose of doing this is to provide
additional functionality in the final wrappers

Copyright (C) 2008, http://www.dabeaz.com 1-

%extend Directive

100

• Usage of the extended class

>>> import sample
>>> s = sample.Spam()
>>> s.set(3,4) # extended method
>>>

• Clever use of this feature can result in Python
wrappers that look very different than the
original C/C++ source

Copyright (C) 2008, http://www.dabeaz.com 1-

%extend Directive

101

• %extend works by collecting the extra
declarations and attaching them to the end of
the parse tree node of the named class

%extend Spam {
 void set(int a, int b) {
 $self->a = a;
 $self->b = b;
 }
};
...

struct Spam {
 int a, b;
};

Copyright (C) 2008, http://www.dabeaz.com 1-

Extended Parse Tree

102

+++ class --
| name - "Spam"
| kind - "struct"
 +++ cdecl --
 | name - "a"
 | type - "int"
 +++ cdecl --
 | name - "b"
 | type - "int"
 +++ extend --
 +++ cdecl ------------------------------
 | name - "set"
 | decl - "f(int,int)."
 | code - "{\n $self->a = a;\n
 | kind - "function"
 | type - "void"
 | feature:extend - "1"

% swig -python -debug-module 1 sample.i

The
extension

Copyright (C) 2008, http://www.dabeaz.com 1-

%extend Directive

103

• %extend can appear anywhere
struct Spam {
 int a, b;
};
...
%extend Spam {
 ...
};

• %extend is open (can appear more than once)

%extend Spam { };
...
%extend Spam { ... };
...
struct Spam { ... };

• Repeats are collected together

Copyright (C) 2008, http://www.dabeaz.com 1-

%template Directive

104

• %template instantiates a template

template<class T> T max(T a, T b) { ... }
...
%template(maxint) max<int>;
%template(maxdouble) max<double>;

• This is needed for a few reasons

• First, if you're going to use a template, you have
to give it a valid Python identifier

• Swig doesn't really know what templates you
actually want to use---you need to tell it

Copyright (C) 2008, http://www.dabeaz.com 1-

%template directive

105

% swig -c++ -python -debug-module 1 sample.i

+++ template --
| templatetype - "cdecl"
| name - "max"
| sym:name - "max"
| decl - "f(T,T)."
| parms - T,T
| type - "T"
|
...
+++ cdecl --
| name - "max<(int)>"
| kind - "function"
| sym:name - "maxint"
| decl - "f(int,int)."
| parms - int,int
| type - "int"
|

template<class T> T max(T a,T b)

%template(maxint) max<int>;

Copyright (C) 2008, http://www.dabeaz.com 1-

%template Directive

106

• %template is really just a macro expansion in
the parse tree

• Every use inserts a copy of the templated
declaration into the parse tree where all of the
types have been appropriately expanded

Copyright (C) 2008, http://www.dabeaz.com 1-

Template Discussion

107

• Manual instantiation of templates is one area
where Swig is weak

• Can get real messy if you present Swig with
code that makes heavy use of advanced C++
idioms (e.g., template metaprogramming)

• Swig is coming into that code as an "outsider"

• Compare to Boost.Python which uses C++
templates to wrap C++ (a neat trick BTW)

Copyright (C) 2008, http://www.dabeaz.com 1-

Part 6

108

Code Analysis

Copyright (C) 2008, http://www.dabeaz.com 1-

Code Analysis Phases

109

• After parsing, the parse tree is analyzed by
other parts of Swig

• There are currently 3 phases

% swig -python -debug-module PhaseN sample.i

Phase 1 : C/C++ Parsing (just covered)
Phase 2 : Type processing
Phase 3 : Allocation analysis

• View the results using

Copyright (C) 2008, http://www.dabeaz.com 1-

Type Processing

110

• This phase looks at all of the types, classes,
typedefs, namespaces, and prepares the parse
tree for later code generation

• Fully expands all of the type names

• Example: Namespaces

namespace Spam {
 typedef double Real;
 Real foo(Real x);
};

Copyright (C) 2008, http://www.dabeaz.com 1-

Type Processing

111

% swig -c++ -python -debug-module 1 sample.i
 +++ cdecl --
 | sym:name - "foo"
 | name - "foo"
 | decl - "f(Real)."
 | parms - Real
 | kind - "function"
 | type - "Real"

% swig -c++ -python -debug-module 2 sample.i
 +++ cdecl --
 | sym:name - "foo"
 | name - "Spam::foo"
 | decl - "f(Spam::Real)."
 | parms - Spam::Real
 | kind - "function"
 | type - "Spam::Real"

(Type Processing)

Notice expansion
of type and

declaration names

Copyright (C) 2008, http://www.dabeaz.com 1-

Allocation Analysis

112

• This phase mainly analyzes the memory
management properties of the classes

• Default constructor/destructors

• Detecting the use of smart pointers

• Marking classes used as C++ exceptions

• Virtual function elimination optimization

Copyright (C) 2008, http://www.dabeaz.com 1-

Alloc Analysis : Example

113

• Detecting whether or not it is safe to create
default constructor and destructor wrappers

%module sample
...
struct Spam {
 int a, b;
};

>>> import sample
>>> s = sample.Spam()
>>> s.a = 32
>>> s.b = 13
...
>>> del s

• In the interface, nothing is specified about
creation/destruction.

Copyright (C) 2008, http://www.dabeaz.com 1-

After Parsing

114

+++ class --
| name - "Spam"
| kind - "struct"
 +++ cdecl --
 | name - "a"
 | decl - ""
 | type - "int"
 +++ cdecl --
 | name - "b"
 | decl - ""
 | type - "int"

struct Spam {
 int a,b;
};

% swig -python -debug-module 1 sample.i

Copyright (C) 2008, http://www.dabeaz.com 1-

After Allocation Analysis

115

+++ class --
| name - "Spam"
| kind - "struct"
| allocate:default_constructor - "1"
| allocate:default_destructor - "1"
| allocate:copy_constructor - "1"
 +++ cdecl --
 | ismember - "1"
 | name - "a"
 | decl - ""
 | type - "int"
 +++ cdecl --
 | ismember - "1"
 | name - "b"
 | decl - ""
 | type - "int"

struct Spam {
 int a,b;
};

% swig -python -debug-module 3 sample.i

These added fields
indicate whether or
not it's safe to create
default constructor/
destructor functions

Copyright (C) 2008, http://www.dabeaz.com 1-

Discussion

116

• Code analysis phases look at the parse tree
and add additional attributes

• Essentially, Swig is building a more complete
picture of what's happening in the module

• Keep in mind, all of this occurs before Swig
ever generates a line of output

• It's prepping the module for the Python code
generator that will run at the end

Copyright (C) 2008, http://www.dabeaz.com 1-

Part 7

117

Decorating the Parse Tree

Copyright (C) 2008, http://www.dabeaz.com 1-

Giving Swig Hints

118

• Swig only looks at the contents of headers

• There are a lot of things that can be
determined automatically

• Especially certain semantics of classes

• However, there are other aspects of making an
extension module where user input is required

Copyright (C) 2008, http://www.dabeaz.com 1-

Name Conflicts

119

• Suppose a C++ header uses a reserved word

class Foo {
public:
 virtual void print(FILE *f);
 ...
};

• There is no way this can be wrapped using the
given method name

• Must pick an alternative...

Copyright (C) 2008, http://www.dabeaz.com 1-

%rename Directive

120

• %rename renames a declaration

%rename(cprint) print;
...
class Foo {
public:
 virtual void print(FILE *f);
 ...
};

• This slightly alters the parse tree...

Copyright (C) 2008, http://www.dabeaz.com 1-

%rename Directive

121

+++ class --
| sym:name - "Foo"
| name - "Foo"
| kind - "class"
 +++ access --
 | kind - "public"
 |
 +++ cdecl --
 | sym:name - "cprint"
 | name - "print"
 | decl - "f(p.FILE)."
 | parms - FILE *
 | kind - "function"
 | type - "void"

% swig -python -debug-module 1 sample.i

Here is the renamed
declaration

Copyright (C) 2008, http://www.dabeaz.com 1-

%ignore Directive

122

• %ignore ignores a declaration (in the wrappers)

%ignore print;
...
class Foo {
public:
 virtual void print(FILE *f);
 ...
};

• This is also a parse tree manipulation...

Copyright (C) 2008, http://www.dabeaz.com 1-

%ignore Directive

123

+++ class --
| sym:name - "Foo"
| name - "Foo"
| kind - "class"
 +++ access --
 | kind - "public"
 |
 +++ cdecl --
 | name - "print"
 | feature:ignore - "1"
 | decl - "f(p.FILE)."
 | parms - FILE *
 | kind - "function"
 | type - "void"

% swig -python -debug-module 1 sample.i

Declaration is
marked as "ignored"

Copyright (C) 2008, http://www.dabeaz.com 1-

%immutable Directive

124

• %immutable makes a declaration read-only

%immutable Spam::a;
%immutable Spam::b;

...
struct Spam {
 int a,b;
};

Copyright (C) 2008, http://www.dabeaz.com 1-

%immutable Directive

125

+++ class --
| sym:name - "Spam"
| name - "Spam"
 +++ cdecl --
 | sym:name - "a"
 | name - "a"
 | feature:immutable - "1"
 | kind - "variable"
 | type - "int"
 +++ cdecl --
 | sym:name - "b"
 | name - "b"
 | feature:immutable - "1"
 | kind - "variable"
 | type - "int"

% swig -python -debug-module 1 sample.i

Declaration is
marked as

"immutable"

Copyright (C) 2008, http://www.dabeaz.com 1-

%newobject Directive

126

• %newobject marks a declaration as returning
newly allocated memory

%newobject strdup;
...
char *strdup(const char *s);

• Maybe you want to know this so it can be
cleaned up properly

Copyright (C) 2008, http://www.dabeaz.com 1-

%newobject Directive

127

+++ cdecl --
| sym:name - "strdup"
| name - "strdup"
| decl - "f(p.q(const).char).p."
| parms - char const *
| feature:new - "1"
| kind - "function"
| type - "char"
| sym:symtab - 0x32a3b0
| sym:overname - "__SWIG_0"

% swig -python -debug-module 1 sample.i

Declaration is
marked as "new"

Copyright (C) 2008, http://www.dabeaz.com 1-

Declaration Annotation

128

• The last few examples are all the same idea

• You provide a hint regarding a specific declaration

• The hint shows up as a "feature" in the parse tree

• The code generator is programmed to look for
various "features" as part of its processing

Copyright (C) 2008, http://www.dabeaz.com 1-

+++ cdecl --
| sym:name - "strdup"
| name - "strdup"
| decl - "f(p.q(const).char).p."
| parms - char const *
| feature:new - "1"
| kind - "function"
| type - "char"

The %feature Directive

129

• Tags specific declarations with additional
information

%feature("new","1") strdup;
...
char *strdup(const char *s);

• It attaches a value to parse tree nodes

Added feature

Copyright (C) 2008, http://www.dabeaz.com 1-

The %feature Directive

130

• %feature can be narrowed to any single
declaration in the input file

• Uses the same matching rules that C/C++ uses
to uniquely identify declarations

%feature("blah","1") Spam::foo(int) const;

class Spam {
public:
 void foo(const char *s, int);
 void foo(const char *s);
 void foo(int);
 void foo(int) const;
 void foo(double);
 ...
};

Copyright (C) 2008, http://www.dabeaz.com 1-

%feature Use

131

• Virtually all declaration based customizations in
Swig are built using %feature (using macros)

%ignore %feature("ignore","1")
%newobject %feature("new","1")
%immutable %feature("immutable","1")

• Where it gets confusing : %feature is open-
ended. There is no fixed set of "features" and
any part of Swig can be programmed to look
for specific feature names of interest.

Copyright (C) 2008, http://www.dabeaz.com 1-

%feature and Code

132

• Some features operate with code-blocks
%feature("except") Spam::bar {
 try {
 $action
 } catch (SomeException) {
 // Handle the exception in some way
 }
}

• Here, the entire block of code is captured and
attached to the matching declaration

• In this case, we're attaching exception code

Copyright (C) 2008, http://www.dabeaz.com 1-

%feature Wildcards

133

• %feature can pinpoint exact declarations

• However, it can match ranges of declarations

%feature("blah","1"); // Tag everything!
%feature("blah","1") bar; // Tag all 'bar' decls
%feature("blah","1") *::bar; // All 'bar' in classes
%feature("blah","1") ::bar; // All global 'bar'

• In these cases, all declarations that match will
be tagged with the appropriate feature

Copyright (C) 2008, http://www.dabeaz.com 1-

%feature Commentary

134

• %feature is closely related in concept to
Python decorators and Aspect Oriented Prog.

• You're basically "decorating" declarations with
additional information

• This information is used by the low-level code
generators to guide wrapper creation.

Copyright (C) 2008, http://www.dabeaz.com 1-

Discussion

135

• If you understand that Swig works by
decorating the parse tree, you start to see how
interfaces get put together

• Typical Swig interface

%module sample
%{
#include "sample.h"
%}

%feature(...) bar;
%feature(...) foo;
...
%include "sample.h"
...

Preamble

Decorations

A header

Copyright (C) 2008, http://www.dabeaz.com 1-

Difficulties

136

• There are too many features! (dozens)
%immutable %feature("immutable")
%nodefault %feature("nodefault")
%nodefaultctor %feature("nodefaultctor")
%nodefaultdtor %feature("nodefaultdtor")
%copyctor %feature("copyctor")
%exception %feature("except")
%allowexcept %feature("allowexcept")
%exceptionvar %feature("exceptvar")
%catches %feature("catches")
%exceptionclass %feature("exceptionclass")
%newobject %feature("new")
%delobject %feature("del")
%refobject %feature("ref")
%unrefobject %feature("unref")
%callback %feature("callback")
%fastdispatch %feature("fastdispatch")
%director %feature("director")
%contract %feature("contract")

Copyright (C) 2008, http://www.dabeaz.com 1-

Difficulties

137

• The features are not randomly implemented

• There to solve some sort of customization

• Almost always related to underlying semantics
of the code being wrapped

• However, you need to look at a manual to
know all of the available options

Copyright (C) 2008, http://www.dabeaz.com 1-

Example

138

• Contract checking (a little known feature)

%contract sqrt(double x) {
require:
 x >= 0;
}
...
double sqrt(double);

• Specific language backends might define even
more exotic features

Copyright (C) 2008, http://www.dabeaz.com 1-

Part 7

139

Code Generation

Copyright (C) 2008, http://www.dabeaz.com 1-

Code Generation

140

• The last phase of Swig processing is the
generation of low-level wrapper code

• There are four basic building blocks

• Inserting literal code into the output

• Creating a wrapper function

• Installing a constant value

• Wrapping a global variable

Copyright (C) 2008, http://www.dabeaz.com 1-

Swig Output

141

• Swig creates two different output files

shell % swig -python sample.i
shell % ls
sample.i sample_wrap.c sample.py
shell %

• The _wrap.c file is C code that must be
compiled in a shared library

• The .py file is Python support code that serves
as a front-end to the low-level C module

Copyright (C) 2008, http://www.dabeaz.com 1-

Output Code Sections
• Internally, there are 5 named file "targets"

142

"runtime"

"header"

"wrapper"

"init"

"python"

module_wrap.c module.py

Copyright (C) 2008, http://www.dabeaz.com 1-

%insert(section)

143

• Inserts literal code into any named file section

%insert("runtime") %{
 static void helloworld() { printf("Hello World\n"); }
%}

%insert("python") %{
Print a welcome message
print "Welcome to my Swig module"
%}

• Note: These are usually aliased by macros

%runtime %{ ... %}
%header %{ ... %} (Same as bare %{ ... %})
%wrapper %{ ... %}
%init %{ ... %}

Copyright (C) 2008, http://www.dabeaz.com 1-

Wrapper Functions

144

• The most elementary form of a Python
extension function is the following:

PyObject *wrapper(PyObject *self, PyObject *args) {
 ...
}

• Swig wraps almost all C/C++ declarations with
simple Python extension functions like this

Copyright (C) 2008, http://www.dabeaz.com 1-

Wrapper Creation

145

%module sample
...
int foo(int x, int y);

PyObject *
_wrap_foo(PyObject *self, PyObject *args)
{
 ...
}

"runtime"

"header"

"wrapper"

"init"

module_wrap.c

Create a wrapper

Copyright (C) 2008, http://www.dabeaz.com 1-

Wrapper Initialization

146

%module sample
...
int foo(int x, int y);

"runtime"

"header"

"wrapper"

"init"

module_wrap.c

Installation of the
wrapper into the

module table
_wrap_foo

static PyMethodDef SwigMethods[] = {
 { "foo", _wrap_foo, METH_VARARGS, NULL},
 ...
};

Copyright (C) 2008, http://www.dabeaz.com 1-

Python Wrapper

147

%module sample
...
int foo(int x, int y);

module_wrap.c

_module.pyd

.foo : _wrap_foo

cc

module.py

import _module

Make a reference
to the wrapper in

the Python file

foo = _module.foo

Copyright (C) 2008, http://www.dabeaz.com 1-

Wrapper Functions

148

• Swig reduces all declarations to low-level
wrappers

• Example : A C structure

%module sample
...
struct Spam {
 int a, b;
};

Copyright (C) 2008, http://www.dabeaz.com 1-

Reduction to Functions

149

struct Spam {
 int a, b;
};

Spam *new_Spam() { return (Spam *) malloc(sizeof(Spam)); }
void delete_Spam(Spam *s) { free(s); }
int Spam_a_get(Spam *s) { return s->a; }
void Spam_a_set(Spam *s, int a) { s->a = a; }
int Spam_b_get(Spam *s) { return s->b; }
void Spam_b_set(Spam *s, int b) { s->b = b; }

This is a collection of "accessor" functions that
provide access to the implementation of the structure

Reduction to functions

Copyright (C) 2008, http://www.dabeaz.com 1-

Wrapper Generation

150

Spam *new_Spam() { return (Spam *) malloc(sizeof(Spam)); }
void delete_Spam(Spam *s) { free(s); }
int Spam_a_get(Spam *s) { return s->a; }
void Spam_a_set(Spam *s, int a) { s->a = a; }
int Spam_b_get(Spam *s) { return s->b; }
void Spam_b_set(Spam *s, int b) { s->b = b; }

PyObject *_wrap_new_Spam(PyObject *self, PyObject *args);
PyObject *_wrap_delete_Spam(PyObject *self, PyObject *args);
PyObject *_wrap_Spam_a_get(PyObject *self, PyObject *args);
PyObject *_wrap_Spam_a_set(PyObject *self, PyObject *args);
PyObject *_wrap_Spam_b_get(PyObject *self, PyObject *args);
PyObject *_wrap_Spam_b_set(PyObject *self, PyObject *args);

Wrapper code

Copyright (C) 2008, http://www.dabeaz.com 1-

Proxy Generation

151

.new_Spam: _wrap_new_Spam

.delete_Spam: _wrap_delete_Spam

.Spam_a_get: _wrap_Spam_a_get

.Spam_a_set: _wrap_Spam_a_set

.Spam_b_get: _wrap_Spam_b_get

.Spam_b_set: _wrap_Spam_b_set

_module.pyd

class Spam(object):
 def __init__(self):
 self.this = _module.new_Spam()
 a = property(_module.Spam_a_get,_module.Spam_a_set)
 b = property(_module.Spam_b_get,_module.Spam_b_set)
 ...

module.py

Copyright (C) 2008, http://www.dabeaz.com 1-

Commentary

152

• There are a lot of low-level details I'm omitting

• A critical point : Swig never wraps C/C++
objects with Python types defined in C.

• Objects are always wrapped by proxies
implemented partly in Python as shown

Copyright (C) 2008, http://www.dabeaz.com 1-

Part 8

153

Customizing Code Generation with Typemaps

Copyright (C) 2008, http://www.dabeaz.com 1-

Typemaps

154

• A customization feature applied to specific
datatypes that appear in the input

• Background: The primary role of a wrapper
function is to convert data between Python/C.

• Typemaps allow you to hook into that
conversion process and customize it

• Without a doubt : This is the most mind-
boggling part of Swig.

Copyright (C) 2008, http://www.dabeaz.com 1-

Introduction

155

• Consider this C function and a hand-written
Python wrapper (from intro)

/* A simple C function */
double square(double x) {
 return x*x;
}

PyObject *py_square(PyObject *self, PyObject *args) {
 double x, result;
 if (!PyArg_ParseTuple(self,"d",&x)) {
 return NULL;
 }
 result = square(x);
 return Py_BuildValue("d",result);
}

Copyright (C) 2008, http://www.dabeaz.com 1-

Introduction

156

• In the wrapper, there is a mapping from types
in the declaration to conversion code

/* A simple C function */
double square(double x) {
 return x*x;
}

PyObject *py_square(PyObject *self, PyObject *args) {
 double x, result;
 if (!PyArg_ParseTuple(self,"d",&x)) {
 return NULL;
 }
 result = square(x);
 return Py_BuildValue("d",result);
}

inputoutput

Copyright (C) 2008, http://www.dabeaz.com 1-

%typemap directive

157

• Allows complete customization of what
happens during type conversion

%typemap(in) double {
 // Custom input conversion code
}
%typemap(out) double {
 // Custom output conversion code
}

/* The C function to wrap */
double square(double x);

Copyright (C) 2008, http://www.dabeaz.com 1-

Sample Wrapper Code

158

PyObject *_wrap_square(PyObject *self, PyObject *args) {
 PyObject *resultobj = 0;
 double arg1 ;
 double result;
 PyObject * obj0 = 0 ;

 if (!PyArg_ParseTuple(args,(char *)"O:square",&obj0)) SWIG_fail;
 {
 // Custom input conversion code
 }
 result = (double)square(arg1);
 {
 // Custom output conversion code
 }
 return resultobj;
fail:
 return NULL;
}

Copyright (C) 2008, http://www.dabeaz.com 1-

%typemap variables

159

• A typemap is just a fragment of C code

• In that fragment, there are special substitutions

$1 - The value in C
$input - The Python input value
$result - The Python result value

• Example:

%typemap(in) double {
 $1 = PyFloat_AsDouble($input);
}
%typemap(out) double {
 $result = PyFloat_FromDouble($1);
}

Copyright (C) 2008, http://www.dabeaz.com 1-

Sample Wrapper Code

160

PyObject *_wrap_square(PyObject *self, PyObject *args) {
 PyObject *resultobj = 0;
 double arg1 ;
 double result;
 PyObject * obj0 = 0 ;

 if (!PyArg_ParseTuple(args,(char *)"O:square",&obj0)) SWIG_fail;
 {
 arg1 = PyFloat_AsDouble(obj0);
 }
 result = (double)square(arg1);
 {
 resultobj = PyFloat_FromDouble(result);
 }
 return resultobj;
fail:
 return NULL;
}

Copyright (C) 2008, http://www.dabeaz.com 1-

%typemap matching

161

• A typemap binds to both to types and names

• Can use that fact to pinpoint types

%typemap(in) double nonnegative {
 $1 = PyFloat_AsDouble($input);
 if ($1 < 0) {
 PyErr_SetString(PyExc_ValueError,"must be >=0");
 return NULL;
 }
}

double sqrt(double nonnegative);

Copyright (C) 2008, http://www.dabeaz.com 1-

%typemap matching

162

• Typemaps can also bind to typedef names

typedef double nndouble;
%typemap(in) nndouble {
 $1 = PyFloat_AsDouble($input);
 if ($1 < 0) {
 PyErr_SetString(PyExc_ValueError,"must be >=0");
 return NULL;
 }
}

double sqrt(nndouble x);

• The typemap only applies to types that exactly
match that name

Copyright (C) 2008, http://www.dabeaz.com 1-

Interlude

163

• Normally, you don't have to define typemaps

• Swig already knows how to convert primitive
datatypes, handle C/C++ pointers, etc.

• Typemaps only come into play if you want to
make an extension module do something other
than the default behavior

Copyright (C) 2008, http://www.dabeaz.com 1-

Example: Multiple Outputs

164

• Wrapping a function with multiple outputs

double do_sqrt(double x, int *status) {
 double result;
 if (x >= 0) {
 result = sqrt(x);
 *status = 1;
 } else {
 result = 0;
 *status = 0;
 }
 return result;
}

• Here, the function returns a result and a status

• Suppose you wanted both returned as a tuple?

Copyright (C) 2008, http://www.dabeaz.com 1-

Example: Multiple Outputs

165

• Typemaps to do this

%typemap(in,numinputs=0) int *status(int stat_value) {
 $1 = &stat_value;
}

%typemap(argout) int *status {
 PyObject *newobj = Py_BuildValue(("O",i),$result,*$1);
 Py_DECREF($result);
 $result = newobj;
}
...
double do_sqrt(double x, int *status);

• Now, let's look at what happens

Copyright (C) 2008, http://www.dabeaz.com 1-

Example: Multiple Outputs

166

%typemap(in,numinputs=0) int *status(int stat_value) {
 $1 = &stat_value;
}

PyObject *_wrap_do_sqrt(self, PyObject *args) {
 PyObject *resultobj = 0;
 double arg1 ;
 int *arg2 = (int *) 0 ;
 double result;
 int stat_value2 ;
 PyObject * obj0 = 0 ;

 {
 arg2 = &stat_value2;
 }
 if (!PyArg_ParseTuple(args,(char *)"O:do_sqrt",&obj0)) SWIG_fail;
 {
 arg1 = PyFloat_AsDouble(obj0);
 }

Variable to hold value

Set pointer to temporary variable

Copyright (C) 2008, http://www.dabeaz.com 1-

Example: Multiple Outputs

167

%typemap(argout) int *status {
 PyObject *newobj = Py_BuildValue("(O,i)",$result,*$1);
 Py_DECREF($result);
 $result = newobj;
}

PyObject *_wrap_do_sqrt(self, PyObject *args) {
 ...
 result = (double)do_sqrt(arg1,arg2);
 {
 resultobj = PyFloat_FromDouble(result);
 }
 {
 PyObject *newobj = Py_BuildValue("(O,i)",resultobj,*arg2);
 Py_DECREF(resultobj);
 resultobj = newobj;
 }
 return resultobj;

Copyright (C) 2008, http://www.dabeaz.com 1-

Example: Multiple Outputs

168

• Example use:

>>> import sample
>>> sample.do_sqrt(4)
(2.0, 1)
>>> sample.do_sqrt(-4)
(0.0, 0)
>>>

Copyright (C) 2008, http://www.dabeaz.com 1-

Commentary

169

• Writing typemap code is extremely non-trivial

• Requires knowledge of both Swig and Python

• May have to get into blood and guts of
memory management (reference counting)

• Code that you write is really ugly

• However, you need to realize that people have
already written a lot of this code

Copyright (C) 2008, http://www.dabeaz.com 1-

Typemap Libraries

170

• Swig comes with libraries of typemaps

• Use the %apply directive to use them

%include "typemaps.i"
%apply int *OUTPUT { int *status };

...
double do_sqrt(double x, int *status);

• Someone already figured out that output
argument problem. We're using that code.

• %apply applies a set of typemaps to a new type

Copyright (C) 2008, http://www.dabeaz.com 1-

More Commentary

171

• People like to complain about typemaps

• Yet, it is not necessary to manually write
typemap code in most situations

• If you are new to Swig and you are trying to
write typemaps, you need to stop what you're
doing and go re-read the documentation.

• Always intended as an advanced feature

Copyright (C) 2008, http://www.dabeaz.com 1-

Cautions

172

• The default set of Python typemaps is of
considerable complexity (even I can't quite
wrap my brain around all of it right now)

• Considerable effort concerning memory
management, error handling, threads, etc.

• UTL (Universal Typemap Library). An effort to
unify core typemaps across Python/Ruby/Tcl
and other languages (heavy use of macros)

Copyright (C) 2008, http://www.dabeaz.com 1-

Part 9

173

Where to go from here?

Copyright (C) 2008, http://www.dabeaz.com 1-

Wrap-up

174

• Swig is built from a few basic components

• Preprocessor - For defining macros

• Parser - Grabs the an entire parse tree

• Features - Decoration of the parse tree

• Typemaps - Code fragments used in wrappers

Copyright (C) 2008, http://www.dabeaz.com 1-

Using Swig

175

• The best way to think of Swig is as a code
generator based on pattern matching

• You're going to define various rules/
customizations for specific declarations and
datatypes

• Those rules then get applied across a header file

Copyright (C) 2008, http://www.dabeaz.com 1-

Complaints

176

• Although each part of Swig is conceptually
simple, all of the features we've described can
interact with each other

• Can create interfaces that are a mind-boggling
combination of macros/features/typemaps

• Swig is so flexible internally, that contributers
have added a vast array of customizations

• I don't even fully understand all of it!

Copyright (C) 2008, http://www.dabeaz.com 1-

Start Simple

177

• To get the most out of Swig, it's best to start
small and build over time

• Most of the really exotic features are not
needed to get going

• Although Swig is complicated, I think the power
of the implementation grows on you

• There are some really sick things you can do...

Copyright (C) 2008, http://www.dabeaz.com 1-

More Information

178

• http://www.swig.org

• There is extensive documentation

• Past papers describing Swig and how it works

