Swig Master Class

David "Mr. Swig" Beazley
http://www.dabeaz.com

Presented at PyCon'2008

Copyright (C) 2008, http://www.dabeaz.co

An Introduction

® Perhaps you've heard about this little Python-
extension building tool called "Swig" and
wondered what it was all about

® Maybe you used it on some simple code and
were a little "surprised” that it worked.

® Maybe you tried to use it for something more
complicated and were a) Overwhelmed, b)
Confused, c) Horrified, or d) All of the above.

Copyright (C) 2008, http://www.dabeaz.co

Swig Essentials

® The official website:

http://www.swig.org

® The short history
® First implementation (summer, 1995)
® First release (Feb. 1996)
® First paper (June 1996, Python Workshop)

® And now thousands of users...

Copyright (C) 2008, http://www.dabeaz.co

About Me

® | am the original creator of Swig

® | wanted to make it easy for scientists to put
scripting interfaces on physics software

® Have since worked on a variety of other
projects (parsing tools, debuggers, etc.)

® | am still involved with Swig, but am coming
off of a bit of sabbatical from working on it.

Copyright (C) 2008, http://www.dabeaz.co

About Swig

® Swig has been around for many years and has
been actively maintained by a large group of
developers

® However, its complexity has grown along with
its capabilities

® Although it is still easy to use on "simple"
projects, more advanced tasks can (regrettably)
involve a rather steep learning curve.

Copyright (C) 2008, http://www.dabeaz.co

About this Class

® How Swig is put together
® How Swig thinks about extension building
® How Swig code generation works

® How various customization features work

Copyright (C) 2008, http://www.dabeaz.com

Disclaimers

® This is an advanced course

® | will assume the following:
® You can write Python programs
® You can write C/C++ programs

® You have made extensions to Python
before (by hand or with a tool)

Copyright (C) 2008, http://www.dabeaz.co

Disclaimers

® This class is about important concepts and
the "big picture."

® This isn't a Swig reference manual or even a
detailed tutorial for beginners.

® But, the Swig reference manual will (hopefully)
make a lot more sense after this class

Copyright (C) 2008, http://www.dabeaz.com

No Advocacy!

® This is not a Swig sales pitch
® |t's a look inside to see how Swig works

® Mostly, | want to demystify parts of it

Copyright (C) 2008, http://www.dabeaz.co

Format

® Course is organized as a discussion with
some live examples/demos

® You can follow along, but you will need
Python, Swig, C/C++ installed on your system

® |'m not going to talk about how to configure
your environment.

® Please stop me to ask questions!

Copyright (C) 2008, http://www.dabeaz.com

-10

Part |

Python Extension Building and Swig

Copyright (C) 2008, http://www.dabeaz.com

Python Extensions

® Python can be extended with C functions

/* A simple C function */
double square(double x) {
return x*Xx;

}

® To do this, you have to write a wrapper

PyObject *py square(PyObject *self, PyObject *args) {
double x, result;
if (!PyArg ParseTuple(self,"d",&x)) {
return NULL;
}
result = square(x);
return Py BuildvValue("d",result);

Copyright (C) 2008, http://www.dabeaz.com

Wrapper Functions

® The wrapper serves as glue

Python

C/C++

® [t converts values from Python to a low-level
representation that C can work with

® |t converts results from C back into Python

Copyright (C) 2008, http://www.dabeaz.com I - I 3

Extension Modules

® An extension module is just a collection of
wrapper functions

® Additional initialization code sets it up

/* Method table for extension module */

static PyMethodDef extmethods[] = {
{"square", py_square, METH VARARGS},
{NULL, NULL}

}

/* initialization function */
void initext() {

Py InitModule("ext",extmethods);
}

Copyright (C) 2008, http://www.dabeaz.com I - I 4

Packaging of Extensions

® Extension modules usually compiled into
shared libraries or DLLs (ext.so, ext.pyd, etc.)

® The import statement knows to look for such
files (along with .py, .pyc, and .pyo files)

>>> import ext
>>> ext.square(4)
16.0
>>>
® There are many details related to the
compilation of these modules (but, that's an

entirely different tutorial)

Copyright (C) 2008, http://www.dabeaz.co

- 15

The Problem

® Writing extension code by hand is annoying
® Extremely tedious and error prone
® Difficult to maintain

® Not at all obvious when you start getting into
gnarly C/C++ code (structs, classes, arrays,
pointers, templates, etc.)

Copyright (C) 2008, http://www.dabeaz.com

-16

Extension Tools

® Python has a large number of tools that aim
to "simplify" the extension building process

® Boost.Python
® ctypes
e SIP
e pyfort
® Pyrex
® Swig
® Apologies to anyone | left out

Copyright (C) 2008, http://www.dabeaz.com

-17

Swig

® Swig generates wrappers from C++ headers

® Basic idea :You just list everything you want in
your extension module using normal C-style
declarations

® Swig parses those declarations and creates an
output file of C/C++ code which you compile
to make your module

Copyright (C) 2008, http://www.dabeaz.com

-18

Sample Swig Interface

® Here is a sample Swig specification:

gmodule sample

%{

#include "myheader.h"

#include "otherheader.h"

%}

#define PI 3.14159;

int foo(int x, int y);

double bar(const char

struct Spam {
int a, b;

}i

*s);

Copyright (C) 2008, http://www.dabeaz.com I' |9
S le Swig Interf:
® Here is a sample Swig specification:
$module sample ‘—(Preamble
%{ :
#include "myheader.h"
#include "otherheader.h" Gives the module name and
5} provides declarations needed
, to get the code to compile
#define PI 3.14159; lly header fil
int foo(int x, int y); \(usua Yy header |es)
double bar(const char *s);
struct Spam ({
int a, b;
}i
1-20

Copyright (C) 2008, http://www.dabeaz.com

Sample Swig Interface

® Here is a sample Swig specification:

gmodule sample

%

#include "myheader.h"
#include "otherheader.h"

%}

#define PI 3.14159; —
int foo(int x, int y);
double bar (const char *s);

struct Spam {
int a, b;

}i

Copyright (C) 2008, http://www.dabeaz.com

Declarations.

List everything that you
want in the extension
module.

[-21

Running Swig

® Swig is a command-line tool

shell % swig -python sample.i
shell %

Unless there are errors, it is silent

Invocation of Swig may be hidden away.

For instance, distutils/setuptools runs Swig
automatically if you list a .i file as a source.

Copyright (C) 2008, http://www.dabeaz.com

[-22

Copyright (C) 2008, http://www.dabeaz.com

Swig Output

As output, Swig produces two files

shell % 1s
sample.i sample wrap.c sample.py
shell %

The _wrap.c file is C code that must be
compiled in a shared library

The .py file is Python support code that serves
as a front-end to the low-level C module

Users import the .py file

[-23

Building Swig Extensions

® Swig extension modules always come in pairs

Copyright (C) 2008, http://www.dabeaz.com

sample.i

sample wrap.c

)

\ 7 N
i _sample.pyd sample.py

These two files are the "module"
|-24

Dual-Module Architecture

® Swig uses a dual-module architecture where
some code is in C and other code is in Python

user
imports

sample.py

l imports
_sample.pyd

® This same approach is used by Python itself
(socket.py, _socket.pyd, thread.pyd, threading.py)

[-25

Copyright (C) 2008, http://www.dabeaz.com

Using a Swig Module

® Usually no big surprises

>>> import sample
>>> sample.foo(73,37)
42

>>> sample.PI
3.1415926

>>> x = sample.bar("123.45")
>>> s = sample.Spam()
>>> s.a =1

>>> s.b = 2

>>> print s.a + s.b

3

>>>

® Everything in the declaration list is available and
"works" as you would expect

[-26

Copyright (C) 2008, http://www.dabeaz.com

General Philosophy

® The main goal of Swig is to make a “natural”
interface to C/C++ code

gmodule sample
>>> import sample

class Spam { >>> s = sample.Spam()
public: _ 3 >>> s.a = 42

int a,b; >>> x = s.bar(37)

int bar(int); >>> sample.Spam. foo()

static foo(void); >>>

}i

® A very large subset of C/C++ is supported

® Use in Python is the same as use in C++

Copyright (C) 2008, http://www.dabeaz.com

[-27

Swig-generated Code

® Swig generates the same kind of code that you
would normally write by hand

® [t creates wrapper functions
® [t creates a module initialization function

® |t packages everything up into a file that you
can compile into a extension module

Copyright (C) 2008, http://www.dabeaz.com

[-28

The Horror, The Horror

® When people first come to Swig, they might
look at the output files and have their head
explode.

® That code is not meant to be read.

® However, there are a number of critical things
going on in the output...

Copyright (C) 2008, http://www.dabeaz.com I - 29

Compiler Dependencies

® Output includes a lot of compiler switches,
macros, and other definitions for portability

#ifndef SWIGEXPORT
if defined(_WIN32) || defined(_ WIN32__) || defined(__ CYGWIN_)
if defined(STATIC_ LINKED)
define SWIGEXPORT
else
define SWIGEXPORT __ declspec(dllexport)
endif
else
if defined(_GNUC__) && defined(GCC_HASCLASSVISIBILITY)
define SWIGEXPORT __ attribute_ ((visibility("default")))
else
define SWIGEXPORT
endif
endif
#endif

FHF R HFHFHRHFHRHRHHRH

Copyright (C) 2008, http://www.dabeaz.com I - 30

Runtime Support

® The wrapper code also includes a runtime
library of about 3000 lines of code

® Library functions, macros, etc.

® This is needed to deal with more complex
aspects of extension modules (especially C++)

® A critical part of how modules are packaged

[-31

Copyright (C) 2008, http://www.dabeaz.co

Self-Containment

® Many people don't realize that the output of
Swig is identical on all platforms

® The wrapper code has no third-party
dependencies and does not rely on any part of
a Swig installation (headers or libraries)

® Code generated by Swig can be distributed
independently from Swig

® End users don't need Swig installed

[-32

Copyright (C) 2008, http://www.dabeaz.co

Part 2

Extension Building and Type Systems

[-33

Copyright (C) 2008, http://www.dabeaz.co

The Extension Problem

® The problem of building extension modules
is not new---people have been doing this
from the beginning days of Python.

® What is the true nature of this problem?
® |s it simply a code generation problem?

® [s it some kind of text “parsing” problem?

I-34

Copyright (C) 2008, http://www.dabeaz.co

Concept : Types

® Programming languages operate on different
kinds of data.

® Data has a “type” associated with it

/* C++ */ # Python
int a; a = 37
double b; b = 3.14159
char *c; c = "Hello"

® |n C, variables have explicit types

® In Python, values have an implicit type

[-35

Copyright (C) 2008, http://www.dabeaz.co

Concept : Type Systems

® There are rules that dictate what you can
and can not do with various types

x = 42 + "Hello" # TypeError

® These rules make up the "type system"

® In Python, checking occurs at run-time
(dynamic typing)

® |n C++, checking occurs in the compiler
(static typing)

I-36

Copyright (C) 2008, http://www.dabeaz.com

Type System Elements

® The type system is more than just the
representation of data

® Example : Mutability of data

const int x = 42;

x = 37; // Error. x is "const"

® Example: Inheritance in OO

class Foo {};
class Bar : public Foo {};
class Spam {};

Foo *a = new Foo(); // Ok
Foo *b = new Bar(); // Ok (Bar is a Foo)
Foo *c = new Spam(); // Error (Spam is not a Foo)
Copyright (C) 2008, http://www.dabeaz.com I = 37

Extension Building

® Extensions are mainly a type-system problem

® When you write "wrappers", you are creating
glue that sits between two type systems

C++ Python

- - (")
char, short, int, int, long, float,
long, float, str, unicode,
double, char *, —> list, dict,
const, volatile, rappe tuple,class,
struct { ... }, ce
class { ... },
template,namespace

R Y, - J

Copyright (C) 2008, http://www.dabeaz.com I - 38

This Makes Sense

® When you write Python extension code,
about 95% of the time, you're futzing around
with various forms of type conversion

® Converting arguments from Python to C
® Converting results from C to Python

® |t's clearly a problem that is at least strongly
related to type systems.

Copyright (C) 2008, http://www.dabeaz.co

[-39

Extension Building Tools

® [f you start using extension building tools,
much of your time is also oriented around
type handling

® |t just looks different than if you're writing
code by hand.

® Example: Using the ctypes module

Copyright (C) 2008, http://www.dabeaz.co

[-40

ctypes Example

® A C function

double half(double x) { return x/2; }

® Loadinga DLL

>>> import ctypes

>>> ext = ctypes.cdll.LoadLibrary("./libext.so")
>>> ext.half(5)

-1079032536

>>>

® Fixing the types

>>> ext.half.argtypes = (ctypes.c_double,)
>>> ext.half.restype = ctypes.c_double
>>> ext.half(5)

2.5

>>>

[-41

Copyright (C) 2008, http://www.dabeaz.com

The Problem

® Understanding the type system is a lot
harder than it looks

® There's much more to it than just
converting data back and forth

® Example : How many C/C++ programmers
would claim that they really understand the
C++ type system!?

[-42

Copyright (C) 2008, http://www.dabeaz.com

C Type System

® Example: Explain the difference

const char *s;
char *const s;
const char *const s;

® Example: What is the following!?
void (*s(int, void (*)(int)))(int);

® Example: Explain the difference

int **x;
int y[10]1[107];

Copyright (C) 2008, http://www.dabeaz.com

[-43

C++ Type System

® Example: Explain this code

template<int N> struct F {

enum { value = N*F<N-1>::value };
}i
template<> struct F<0> {

enum { value =1 };

}i

int x = F<4>::value;

Copyright (C) 2008, http://www.dabeaz.com

|- 44

Copyright (C) 2008, http://www.dabeaz.com

Part 3

Inside the C/C++ Type System

|- 45

Primitive C Types

® C is based on a primitive set of types

Byte char 8 bits
|nteger int Typically 32 bits
Floating float 32 bit single precision
point double 64 bit double precision

® These types are a direct reflection of low-level
computer hardware (the integer/floating point

units of a microprocessor).

Copyright (C) 2008, http://www.dabeaz.com

I-46

long/short Modifiers

® Integers can have "short" and "long" modifiers
added to them to get different word sizes

short int # 16 bit integer
long int # 32 or 64 bit integer
long long int # 64 bit integer (support varies)

® Since the "int" is redundant, it is often dropped

short # 16 bit integer
long # 32 or 64 bit integer
long long # 64 bit integer (support varies)

® |ong can also be applied to double (sometimes)

long double # 128 quad-precision float

Copyright (C) 2008, http://www.dabeaz.com I - 47

Signed/Unsigned Modifiers

® Integer types can also have a sign modifier

signed char, wunsigned char
signed short, unsigned short
signed int, unsigned int
signed long, wunsigned long

® This modifier only provides information to the
compiler on how the underlying data should be
interpreted.

(bunch of bits)
[1111111011101111] signed short -> =275
[1111111011101111] unsigned short -> 65261

® No effect on the underlying data representation

Copyright (C) 2008, http://www.dabeaz.com I - 48

Simple Datatypes

® [f you take the primitive types and associated
modifiers you get a complete list of the simple
C types that are used to represent data.

char // 8-bit signed int
unsigned char // 8-bit unsigned int
short // 16-bit signed int
unsigned short // 16-bit unsigned int

int // 32-bit signed int
unsigned int // 32-bit unsigned int
long // 32/64-bit signed int
unsigned long // 32/64-bit unsigned int
long long // 64-bit signed int
unsigned long long // 64-bit unsigned int
float // 32-bit single precision
double // 64-bit double precision

Copyright (C) 2008, http://www.dabeaz.com I = 49
® The Python C APl mirrors this set of types
(PyArg_ParseTuple() conversion codes)
Format Python Type C Datatype
"c" String char
"b" Integer char
"B" Integer unsigned char
"h" Integer short
"H" Integer unsigned short
i Integer int
"I Integer unsigned int
" Integer long
"k Integer unsigned long
"L" Integer long long
"K" Integer unsigned long long
£ Float float
"q" Float double
[-50

Copyright (C) 2008, http://www.dabeaz.com

Type Declarators

® C has more complicated kinds of types

® For example: pointers, arrays, and qualified types

int * // Pointer to an int

int [40] // Array of 40 integers

int *[40] // Array of 40 pointers to integers
int *const // Pointer to a constant int

int *const [40] // Array of 40 pointers to const int

® These are "constructed" by taking a basic type
and applying a sequence of "declarators" to it

Copyright (C) 2008, http://www.dabeaz.com

[-51

Commentary

® The syntax for declarators is mind-boggling

void (*s(int, void (*)(int)))(int);
int *(*x)[10][20];

® That's almost impossible to read

® They are much easier to understand if you write
them out as a sequence

Copyright (C) 2008, http://www.dabeaz.com

[-52

C Declarator Operators

® There are four basic declarators

® Pointer to something
e [N]. An array of N items
® quadlifier. A qualifier (const, volatile)

® (args). A function taking args

[-53

Copyright (C) 2008, http://www.dabeaz.com

C Declarator Operators

® You can rewrite C types as a sequence that
more easily shows its construction...

® Examples:
int int
int * *,int
int [40] [40].int
int *[40] ——> [40].*.int
const int * *,const.int
int *(*)[10][20] *,[10].[20].%.int
int (*)(int *,int) *,(*.int,int).int

® Read the alternative syntax left to right

I-54

Copyright (C) 2008, http://www.dabeaz.com

Declarations/Statements

® |n C, there is a distinction between statements
and declarations

® Statements make up the implementation
X = a + b;

foo(x,y):
for (i = 0; i < 100; i++) { ... }

® Declarations specify type information

double x;
double a,b;
void foo(double, int);

[-55

Copyright (C) 2008, http://www.dabeaz.co

Declarations/Statements

® For extension modules, we do not care about
the implementation

® We are only interested in declarations
® And only those declarations that are visible
® The public interface to C/C++ library code

® So, let's look further at declarations...

[-56

Copyright (C) 2008, http://www.dabeaz.com

Declarations

® A declaration binds a name and storage
specifier to a type

int a,*b;
extern int foo(int x, int y);

typedef int Integer;
static void bar(int x);

® Name : A valid C identifier

® Storage : extern, static, typedef, virtual, etc.

Copyright (C) 2008, http://www.dabeaz.com I = 57
Declaration Tabl
® Declarations are easily stored in a table
int a,*b;
extern int foo(int x, int y);
typedef int Integer;
static void bar(int x);
e A
Nane st or age type
'a' None int
'b' None *.int
'foo' extern (int,int).int
'Integer' typedef int
'bar' static (int) .void
- J
[-58

Copyright (C) 2008, http://www.dabeaz.com

Namespaces

® There is always a global declaration table (::)

® However, declarations can also appear in

® Structures and unions

® C++ classes

® C++ namespaces

® Each of these is just a named declaration table

Copyright (C) 2008, http://www.dabeaz.com

[-59

Namespaces

® Example:

class Spam {

public:
int a,b;
virtual int bar(int);
static int foo(void);

}i

® (Class declaration table

Spam | Nane st or age type
'a' None int
'b' None int
'"bar' virtual (int).int
'foo' static (void).int

Copyright (C) 2008, http://www.dabeaz.com

[-60

Namespaces

® The tricky bit with namespaces is that different
namespaces can be nested and linked together

® |nner namespaces see declarations in outer
namespaces

® Class namespaces see declarations in
namespace for parent class (inheritance)

® All of this gets implemented as a tree

Copyright (C) 2008, http://www.dabeaz.com I - 6 I

C++ Namespace Example

decl s
class A { decls } ;
namespace B {
decl s
class C { decls };
class D : public C { decls };
}

HH A
[decl s }‘ decl s
\ B C

decl s]

decl s
Note:The arrows b }public
indicate "visibility" decl s]

of declarations

Copyright (C) 2008, http://www.dabeaz.com I - 62

Overloading

® C++ allows overloaded functions/methods

int foo(int x);

int foo(double x);

int foo(int x, int y);
void foo(char *s, int n);

® Each func declaration must have unique args

Name st or age type

'foo' None (int).int

'foo' None (double) .int
'foo' None (int,int).int
'foo' None (*.char,int) .void

® The return type is irrelevant

Copyright (C) 2008, http://www.dabeaz.com I - 63

Templates

® C++ allows a declaration to be parameterized

template<par ms> decl ;

® Parameters are specified as a list of types

template<class T> decl ;
template<int n> decl ;
template<class T, int n> decl ;

® To refer to a template, you use the declaration
name with a set of parameters

name<ar gs>

Copyright (C) 2008, http://www.dabeaz.com I - 64

Template Implementation

® Implementing templates is slightly tricky (sic)

® |t's a declaration with arguments, so just add an
extra table column for that

int a;
int foo(int x, int *y);
template<class T> T max(T a, T b);

}

Nane st or age tenplate type
'a' None None int
'foo' None None (int,*.int).int
'max’ None (class T) (T,T).T
Copyright (C) 2008, http://www.dabeaz.com I = 65

Template Implementation

® |dentifiers may also carry arguments

int a;

int foo(int x, int *y);

template<class T> T max(T a, T b);
vector<int> blah(vector<int> *x, int n);

{

Name st or age tenpl ate type

'a' None None int

'foo' None None (int,*.int).int

'max’ None (class T) (T,T).T

'blah' ©None None (*.vector<int>,int).vector<int>

® Nothing changes in the table, just horrid names

Copyright (C) 2008, http://www.dabeaz.com I - 66

Putting it All Together

® The key to everything is knowing that C/C++
header files basically just define a bunch of
declaration tables

® These tables have a very simple structure (even
with features such as C++ templates)

® |f you can assemble the declaration tables, you
can generate wrappers

I-67

Copyright (C) 2008, http://www.dabeaz.co

Seque to Swig

® This is essentially how Swig works
® Parse a C++ header file
® Create declaration tables
® Manipulate the declaration tables

® Generate wrapper code

I-68

Copyright (C) 2008, http://www.dabeaz.co

Swig Architecture

® Swig is a multi-pass compiler

sample.i

|

Preprocessor

!
C/C++ Parser

l Full parse tree

Analysis Modules

l Annotated parse tree

Code Generator

[-69

Copyright (C) 2008, http://www.dabeaz.co

Discussion

® The phases build upon each other

® Each phase has various customization
features that can be applied to control
processing

® These are controlled by special directives
which are always prefixed by %

® |et's look at each phase...

[-70

Copyright (C) 2008, http://www.dabeaz.com

Part 4

The Preprocessor

Copyright (C) 2008, http://www.dabeaz.com

[-71

Preprocessor

® There is a full ANSI C preprocessor

® Supports file includes, conditional compilation,
macro expansion, variadic macros, etc.

® Also implements a number of Swig-specific
extensions related to file inclusion and macros

Copyright (C) 2008, http://www.dabeaz.com

[-72

Preprocessing

® The preprocessor is the primary entry point

® Here's what happens when you run Swig

% swig -python sample.i

expands to...

$include <swig.swg> «——_| _The first two files are part of
| Swigand contain definitions

needed to process the .i file

¢include <python.swg>

¢include "sample.i" that follows
Preprocessor
Copyright (C) 2008, http://www.dabeaz.com I = 73
® The previous slide explains the cryptic error
you get if you don't install Swig properly
% swig -python sample.i
¢include <swig.swg>
%$include <python.swg>
¢include "sample.i"
:l: Error: Unable to find 'swig.swg']
:3: Error: Unable to find 'python.swg' (OOPS')
I-74

Copyright (C) 2008, http://www.dabeaz.com

Viewing Preprocessed Text

® The result of preprocessed input is easy to view

% swig -E -python sample.i

® This will show you the exact input that actually
gets fed into the Swig parser

® Some of this will be rather cryptic, but the goal
is to make life easier for the parser

[-75

Copyright (C) 2008, http://www.dabeaz.com

Preprocessor Extensions

® Swig makes the following extensions to the
normal C preprocessor

® A different set of file-inclusive directives
® Code literals
® Constant value detection

® Macro extensions

[-76

Copyright (C) 2008, http://www.dabeaz.com

File Includes

® Swig uses its own file inclusion directives

® %include : Include a file for wrapping

%$include "other.i"

® %import : Include for declarations only

$import "other.i"

® Rationale : Sometimes you want it wrapped and
sometimes you don't.

[-77

Copyright (C) 2008, http://www.dabeaz.com

File Includes

® By default, Swig ignores all preprocessor
#include statements

® Rationale : Swig doesn't know what you want
to do with those files (so it plays safe)

® All of this can be controlled:

swig -I/new/include/dir # Add a search path
swig -importall # All #includes are %import
swig -includeall # All #includes are %include

[-78

Copyright (C) 2008, http://www.dabeaz.com

Getting File Dependencies

® Listing the file dependencies : swig -M

% swig -python -M sample.i

sample wrap.c: \
/usr/local/share/swig/1.
/usr/local/share/swig/1.
/usr/local/share/swig/1.
/usr/local/share/swig/1.
/usr/local/share/swig/1.
/usr/local/share/swig/1.
/usr/local/share/swig/1.
/usr/local/share/swig/1.
/usr/local/share/swig/1.
/usr/local/share/swig/1.

.31/swig.swg \
.31/swigwarnings.swg \
.31/swigwarn.swg \
.31/python/python.swg \
.31/python/pymacros.swg \
.31/typemaps/swigmacros.swg \
.31/python/pyruntime.swg \
.31/python/pyuserdir.swg \
.31/python/pytypemaps.swg \
.31/typemaps/fragments.swg \

W wwwwwwwww

® This will show you the files in the same order
as they are included and will be parsed
1-79

Copyright (C) 2008, http://www.dabeaz.com

Code Literals

® Raw C/C++ code often has to pass through
the preprocessor so that it can go into the
wrapper output files

® The preprocessor ignores all code in %{..%}

%{
#include "myheader.h"

5

[-80

Copyright (C) 2008, http://www.dabeaz.com

Constant Value Detection

® C/C++ headers often use #define to denote

constants

#define PI 3.1415926
#define PI2 (PI/2)
#define LOGFILE "app.log"

® But macros are often used for other things

#define EXTERN extern

® The preprocessor uses a heuristic to try and
detect the constants for wrapping

Copyright (C) 2008, http://www.dabeaz.com I - 8 I

Constant Value Detection

® Example:

gmodule simple.i

#define PI 3.1415926
#define ©PI2 (PI/2)
#define LOGFILE "app.log"
#define EXTERN extern

® swig -E simple.i

gconstant PI = 3.1415926;
gconstant PI2 = (3.1415926/2);
$constant LOGFILE = "app.log";

Copyright (C) 2008, http://www.dabeaz.com I - 82

Swig Macros

® Swig also has its own macros that extend the
capabilities of the normal C preprocessor

// sample.i

¢define %greet(who)

%echo "Hello " #who ", I'm afraid you can't do that"
$enddef

%¥greet (Dave)

® Example:

% swig -python sample.i
Hello Dave, I'm afraid you can't do that

%

Copyright (C) 2008, http://www.dabeaz.com

Swig Macros

® The macro system is a critical part of Swig

® The macro system is used to reduce typing by
automatically generating large blocks of code

® For better or worse, a lot of Swig low-level
internals are heavily based on macros

Copyright (C) 2008, http://www.dabeaz.com

Swig Macros

® Frankly, the macro system is frightening.

$define FACTORIAL(N)

#if N == 0

1

#else

(N) *FACTORIAL(N-1)

#endif

genddef

int x = FACTORIAL(6); // 720

® Supports recursive preprocessing

® Macros can define other macros (yow!)

[-85

Copyright (C) 2008, http://www.dabeaz.com

Part 5

The C++ Parser

I-86

Copyright (C) 2008, http://www.dabeaz.com

Parsing in a Nutshell

the input

that describes what it is

%
%

The parser constructs a full parse tree from

Each node in this tree is identified by a "tag"

These tags mimic the struct of the input file.

You can easily view the tree structure

swig -python -debug-tags sample.i
swig -python -dump_ tags sample.i

Copyright (C) 2008, http://www.dabeaz.com I = 87
Viewing the Tree Struct
gmodule sample
%{
#include "myheader.h"
#include "otherheader.h"
3}
#define PI 3.14159
int foo(int x| % swig -python -debug-tags sample.
double bar(const e
. top . include (sample.wirt0)-rwmd
struct Spam { . top . include ."@odule (sample.i:ll}
int a, b; . top . include . ingert-(sample:ii’)
}i . top . include . constant (sample.i:7)
. top . include . cdecl (sample.i:8)
. _top . include . cdecl (sample.i:9). .
. . include ..cldss (sample.i:ll) .
. top . ude;. class . cdecl (sample.i:l2)™
. top . includeﬁi.class . cdecl (sample.i:lg)f
Copyright (C) 2008, http://www.dabeaz.com I = 88

Parse Tree Nodes

® All parse tree nodes are dictionaries

® They're not Python dictionaries, but virtually
identical---a mapping of keys (strings) to values

® The values are either numbers, strings, lists, or
other dictionaries

® The parse tree nodes are also easy to view

% swig -python -debug-module 1 sample.i
% swig -python -dump parse_module sample.i

Copyright (C) 2008, http://www.dabeaz.com I - 89

Viewing the Tree Nodes

[}

% swig -python -debug-module 1 sample.i

sSym:overname " SWIG 0"

+++ cdecl --------mmmmmmm oo -[double bar(const char *s);]
| sym:name - "bar"

| name - "bar"

| decl - "f(p.g(const).char)."

| parms - char const *

| kind - "function"

| type - "double"

| sym:symtab - 0x32db70

|

|

There's a lot of information here...

Copyright (C) 2008, http://www.dabeaz.com I - 90

Viewing the Tree Nodes

% swig -python -debug-module 1 sample.i

++{ cdecl - -[double bar (const char *s);j
| syminame” - "bar"
| name - "bar"
| decl - "f(p.g(const).char)."
| parms - char const *
| kind "function"
| type
I sym:symtab | This is the node tag
sym:overna .
| (A C declaration)

Copyright (C) 2008, http://www.dabeaz.com I - 9 I

Viewing the Tree Nodes

[}

% swig -python -debug-module 1 sample.i

i ederl EE R —— -[double bar (const char *s);j
‘[sym:name - "bar" ™ A
| name - "bar" .
[I R B (BT g (const
| parms - char const *
| kind - "function . h
| type - "aouwnle" | These attributes hold the
| sym:symtab - 0x32db70 d I .
| sym:overname - " SWIG 0 eclaration name
|
name The name used in C
sym:name The name used in Python

\- J/

Copyright (C) 2008, http://www.dabeaz.com I - 92

Viewing the Tree Nodes

[}

% swig -python -debug-module 1 sample.i

+++ cdecl - —————————————————— -[double bar (const char *s);]
| sym:name - "bar"

| name - ”bar" ...

| decl < "f(p.q(const).char).":

| parms - ENaFConSh. K

| kind =t fuiietien

| type W double” ‘v

| sym:symtab =-0x32db70 > A
I sym:overname - "__SWIG_0 Declaration base type and

type operators

type The base type
decl Type operators

Copyright (C) 2008, http://www.dabeaz.com I - 93

Type Syntax Explained

® Swig uses a similar representation of the
declarator operators we looked at earlier

p- *.

a(N). [N].
g(qualifiers). qualifiers.
f(parns). (parms) .

® An Example:

double bar(const char *);

f(p.g(const).char).double

Copyright (C) 2008, http://www.dabeaz.com I - 94

[}

Viewing the Tree Nodes

% swig -python -d

+++ cdecl ---——--

Sym:name -
name -
decl -
parms .
kind e
type -
sym:symtab -

sym:overname -

Copyright (C) 2008, http://www.dabeaz.com

ebug-module 1 sample.i

—————————————————— -[double bar(const char *s);]

1function" ‘‘‘‘‘‘‘‘‘‘ -}

TESUBTE™

0x32db7¢ \ . ™\

" SWIG| Other fields have certain

information split out so that
later processing is easier
kind The kind of declaration
parms List of argument types
N 95

Copyright

Different cdecl Types

[}

$ swig -python -debug-module 1 sample.i

+++ cdecl —-—mmmmmmm e {:double bar (const char *s);]

| sym:name -
name -
decl -
parms -
kind -
type -

sym:name
name
decl
kind -

|
|
|
|
|
|
+++ cdecl
|
|
|
I
| type -

(C) 2008, http://www.dabeaz.com

"function"
"double"

int spam;]

"variable"

int"

[-96

Viewing the Tree Nodes

[}

% swig -python -debug-module 1 sample.i

+++ cdecl -—-—————————— -[double bar(const char *s);]
| sym:name - "bar"
| name - "bar" - ~
| decl - "f(p.g(const).char)
| parms - char const * S)'mbOI tables
| kind - "function"
| type.. e SOURLE sym:symtab is the (C++)
~]"Sym:symtab - 0x32db70 ., .)
“-|..§ym:overname - "__SWIG Q.. *€<—| namespace where the
| TTm— declaration lives.
sym:overname is related
to overloaded symbols
N J
Copyright (C) 2008, http://www.dabeaz.com I = 97

Parsing Directives

® There are two important directives that relate
to the construction of the parse tree

® %extend: Class/structure extension

® %template : Template instantiation

Copyright (C) 2008, http://www.dabeaz.com I - 98

%extend Directive

® Extends a class with additional declarations

%extend Spam {
void set(int a, int b) { /* Added method */
Sself->a a;
$self->b b;

}
}i

struct Spam {
int a, b;

}i
® The purpose of doing this is to provide
additional functionality in the final wrappers

[-99

Copyright (C) 2008, http://www.dabeaz.com

%extend Directive

® Usage of the extended class

>>> import sample

>>> s = sample.Spam()

>>> s.set(3,4) # extended method
>>>

® Clever use of this feature can result in Python
wrappers that look very different than the
original C/C++ source

[-100

Copyright (C) 2008, http://www.dabeaz.com

%extend Directive

® %extend works by collecting the extra
declarations and attaching them to the end of
the parse tree node of the named class

%extend Spam {
void set(int a, int b) {
Sself->a a;
Sself->b b;

}
}i
struct Spam {

int a, b;

}i

Copyright (C) 2008, http://www.dabeaz.com

[-101

Extended Parse Tree

$ swig -python -debug-module 1 sample.i
+++ class --—-—————————————

| name - "Spam"
| kind - "struct"
+++ cdeCl —mmmmmmmmm e e
| name - "a"
| type - "int"
+++ cdeCl —-mmmmmmm e
| name - "b"
| type - "int"
+++ extend --------———————————— —
+++ cdecl —----mmm e
| name - "set"
The | decl - "f(int,int)."
. —>| code - "{\n $self->a = a;\n
extension | kind - "function"
| type - "void"
| feature:extend - "1"

Copyright (C) 2008, http://www.dabeaz.com

[-102

%extend Directive

® %extend can appear anywhere

struct Spam {
int a, b;

}i
%extend Spam {

}i

® %extend is open (can appear more than once)

%extend Spam { };
¢extend Spam { ... };
struct Spam { ... };

® Repeats are collected together

Copyright (C) 2008, http://www.dabeaz.com

[-103

%template Directive

® 7%template instantiates a template

template<class T> T max(T a, T b) { ... }

$template(maxint) max<int>;
$template (maxdouble) max<double>;

® This is needed for a few reasons

® First, if you're going to use a template, you have

to give it a valid Python identifier

® Swig doesn't really know what templates you

actually want to use---you need to tell it

Copyright (C) 2008, http://www.dabeaz.com

[-104

Z%template directive

% swig -c++ -python -debug-module 1 sample.i

+++ template -—-—————-—————- —[template<class ™ T max(T a,T b)]
| templatetype - "cdecl"
| name - "max"
| sym:name - "max"
| decl - "f(T,T)."
| parms - T,T
| type - "r"
|
+++ cdecl - —-——————————— [%template(maxint) max<int>;]
| name - "max<(int)>"
| kind - "function"
| sym:name - "maxint"
| decl - "f(int,int)."
| parms - int,int
| type - "int"
|
[-105

Copyright (C) 2008, http://www.dabeaz.com

%template Directive

® %template is really just a macro expansion in
the parse tree

® Every use inserts a copy of the templated
declaration into the parse tree where all of the
types have been appropriately expanded

[-106

Copyright (C) 2008, http://www.dabeaz.com

Template Discussion

® Manual instantiation of templates is one area
where Swig is weak

® Can get real messy if you present Swig with
code that makes heavy use of advanced C++
idioms (e.g., template metaprogramming)

® Swig is coming into that code as an "outsider'

® Compare to Boost.Python which uses C++
templates to wrap C++ (a neat trick BTW)

[-107

Copyright (C) 2008, http://www.dabeaz.com

Part 6

Code Analysis

[-108

Copyright (C) 2008, http://www.dabeaz.com

Code Analysis Phases

® After parsing, the parse tree is analyzed by
other parts of Swig

® There are currently 3 phases

Phase 1 : C/C++ Parsing (just covered)
Phase 2 : Type processing
Phase 3 : Allocation analysis

® View the results using

% swig -python -debug-module PhaseN sample.i

Copyright (C) 2008, http://www.dabeaz.com

[-109

Type Processing

® This phase looks at all of the types, classes,
typedefs, namespaces, and prepares the parse
tree for later code generation

® Fully expands all of the type names

® Example: Namespaces

namespace Spam {
typedef double Real;
Real foo(Real x);

}i

Copyright (C) 2008, http://www.dabeaz.com

[-110

Type Processing

% swig -c++ -python -debug-module 1 sample.i
+++ cdecl -

sym:name - "foo"
| sy
| name - "foo"
| decl - "f(Real)."
arms - Real
| p
kind - "function"
|
| type - "Real"

l (Type Processing)

% swig -c++ -python -debug-module 2 sample.i
+++ cdecl -\

sym:name - "foo"

| sy

| name - "Spam::foo" ““-~\\ ; ;

| decl - "f(Spam::Real)." Notice expansion
| parms - Spam::Real of type and

| Jind ~ ,unctlon / declaration names
| type - "Spam::Real"

Copyright (C) 2008, http://www.dabeaz.com I 'I I |

Allocation Analysis

® This phase mainly analyzes the memory
management properties of the classes

® Default constructor/destructors
® Detecting the use of smart pointers
® Marking classes used as C++ exceptions

® Virtual function elimination optimization

Copyright (C) 2008, http://www.dabeaz.com I 'I I 2

Alloc Analysis : Example

® Detecting whether or not it is safe to create
default constructor and destructor wrappers

tmodule sample >>> import sample

>>> s = sample.Spam()
>>> s.a 32
>>> s.b 13

struct Spam {
int a, b;

}i

>>> del s

® |n the interface, nothing is specified about
creation/destruction.

Copyright (C) 2008, http://www.dabeaz.com I 'I I 3
After Parsi
% swig -python -debug-module 1 sample.i
+++ class -—-—-——————————————
| name - "Span" struct Spam {
| kind - "struct" int a,b;
+++ cdecl ———————————————— bi
| name - "a"
| deC l _ umn
| type - "int"
+++ cdecl -\
| name - "b"
| deC l _ nmn
| type - "int"
[-114

Copyright (C) 2008, http://www.dabeaz.com

After Allocation Analysis

% ig -pyth -debug-module 3 le.i
swig -python ebug-module sample.i struct Spam {

int a,b;
| name B =L N } '
| ‘__'k.lond L st ruct
~|"allocate:default_constructor - "1" ™
| allocate:default_destructor - "1" }
) [mallocate:copy_constructor - "1t =
"""""""""" +++CdeCl ——————__:__—__:_:‘_—“__—,,.—..:-f"“‘—4-:'“\“———————____—___
| ismombor T) .
name - "a"
I decl o These added fields
| type - "int" indicate whether or
T‘T Cdezl T T not it's safe to create
ismember -
| name _ g default constructor/
| decl - destructor functions
| type _ nintn _ J

Copyright (C) 2008, http://www.dabeaz.com [-115
® Code analysis phases look at the parse tree
and add additional attributes
® Essentially, Swig is building a more complete
picture of what's happening in the module
® Keep in mind, all of this occurs before Swig
ever generates a line of output
® |t's prepping the module for the Python code
generator that will run at the end
Copyright (C) 2008, http://www.dabeaz.com I-116

Part /7

Decorating the Parse Tree

[-117

Copyright (C) 2008, http://www.dabeaz.co

Giving Swig Hints

® Swig only looks at the contents of headers

® There are a lot of things that can be
determined automatically

® Especially certain semantics of classes

® However, there are other aspects of making an
extension module where user input is required

[-118

Copyright (C) 2008, http://www.dabeaz.com

Name Conflicts

® Suppose a C++ header uses a reserved word

class Foo {
public:
virtual void print(FILE *f);

}i

® There is no way this can be wrapped using the
given method name

® Must pick an alternative...

Copyright (C) 2008, http://www.dabeaz.com I 'I I 9

%rename Directive

® %rename renames a declaration
$rename (cprint) print;
class Foo {
public:
virtual void print(FILE *f);

}i

® This slightly alters the parse tree...

Copyright (C) 2008, http://www.dabeaz.com I 'I 20

%rename Directive

% swig -python -debug-module 1 sample.i

+++ class ————————————————————— -

| sym:name - "Foo"

| name - "Foo"

| kind - "class"
+++ ACCESS ————
| kind - "public"

+++ cdecl - -\ - ———— —— o o 0 0 : f -
| sym:name - "cprint

| name - vprint" — Here is the renamed
I decl - "£(p.FILE)." declaration
parms - FILE *
| kind - "function"
| type - "void"
Copyright (C) 2008, http://www.dabeaz.com I 'I 2 |

%ignore Directive

® %ignore ignores a declaration (in the wrappers)
$ignore print;
class Foo {
public:
virtual void print(FILE *f);

}i

® This is also a parse tree manipulation...

Copyright (C) 2008, http://www.dabeaz.com I 'I 22

%ignore Directive

% swig -python -debug-module 1 sample.i

+++ class ————————————————————— -

| sym:name - "Foo"

| name - "Foo"

| kind - "class"
+++ ACCESS ————
| kind - "public"

+++ cdecl - -\ - ———— —— o o 0 0 : f -

| name - "print" o
| feature:ignore - "1" <«——— Declaration is
| decl - "f(p.FILE)." marked as "ignored"
| parms - FILE *
| kind - "function"
| type - "void"
Copyright (C) 2008, http://www.dabeaz.com I 'I 23

%immutable Directive

® %immutable makes a declaration read-only

$immutable Spam::a;
¢immutable Spam::b;

struct Spam {
int a,b;

}i

Copyright (C) 2008, http://www.dabeaz.com I 'I 24

%immutable Directive

% swig -python -debug-module 1 sample.i

+++ class —————————mm -

| sym:name - "Spam"
| name - "Spam”
+++ cdecl -—-----mmmm o
| sym:name - "a"
| name - "a"
| feature:immutable - "1"
| kind - "variable"
| type - "int"
+++ cdecl ————————— -
| sym:name - "pb"
| name - "b" Declaration is
| feature:immutable - "1" €«———— marked as
| kind - "variable" " "
| type ~ "int" immutable

Copyright (C) 2008, http://www.dabeaz.com

[-125

Z%onewobject Directive

® %newobject marks a declaration as returning
newly allocated memory

gnewobject strdup;

char *strdup(const char *s);

® Maybe you want to know this so it can be
cleaned up properly

Copyright (C) 2008, http://www.dabeaz.com

[-126

7%onewobject Directive

% swig -python -debug-module 1 sample.i

+++ cdecl -~ - - o 0 0 0 o -

| sym:name - "strdup"
| name - "strdup"
| decl - "f(p.g(const).char).p."
| parms - char const *
| feature:new - "1" < Declaration is
| kind - "function" ked " "
| type vonae marked as "new
| sym:symtab - 0x32a3b0
| sym:overname - "_ SWIG 0"
Copyright (C) 2008, http://www.dabeaz.com I 'I 27

Declaration Annotation

® The last few examples are all the same idea
® You provide a hint regarding a specific declaration
® The hint shows up as a "feature" in the parse tree

® The code generator is programmed to look for
various "features" as part of its processing

Copyright (C) 2008, http://www.dabeaz.com I 'I 28

The %feature Directive

® Tags specific declarations with additional
information

$feature("new","1") strdup;

char *strdup(const char *s);

® |t attaches a value to parse tree nodes

+++ cdecl -
| sym:name - "strdup"

| name - "strdup"”

| decl - "f(p.g(const).char).p."
| parms - char const *
|
|
|

feature:new - "1" < Added feature
kind - "function"
type — ||char n

[-129

Copyright (C) 2008, http://www.dabeaz.com

The %feature Directive

® %feature can be narrowed to any single
declaration in the input file

® Uses the same matching rules that C/C++ uses
to uniquely identify declarations

$feature("blah","1") Spam::foo(int) const;

class Spam {
public:
void foo(const char *s, int);
void foo(const char *s);
void foo(int);
void foo(int) const;
void foo(double);

}i

Copyright (C) 2008, http://www.dabeaz.com

[-130

%feature Use

® Virtually all declaration based customizations in
Swig are built using %feature (using macros)

$ignore $feature("ignore","1")
$newobject —> %feature("new","1")
gimmutable ¢feature("immutable","1")

® Where it gets confusing : %feature is open-
ended. There is no fixed set of "features" and
any part of Swig can be programmed to look
for specific feature names of interest.

Copyright (C) 2008, http://www.dabeaz.com I 'I 3 |

%feature and Code

® Some features operate with code-blocks

$feature("except") Spam::bar {

try {
Saction

} catch (SomeException) {
// Handle the exception in some way
}
}
® Here, the entire block of code is captured and

attached to the matching declaration

® |n this case, we're attaching exception code

Copyright (C) 2008, http://www.dabeaz.com I 'I 32

%feature Wildcards

® %feature can pinpoint exact declarations

® However, it can match ranges of declarations

$feature("blah","1"); // Tag everything!
$feature("blah","1") bar; // Tag all 'bar' decls
$feature("blah","1") *::bar; // All 'bar' in classes
$feature("blah","1") ::bar; // All global 'bar'

® |n these cases, all declarations that match will
be tagged with the appropriate feature

[-133

Copyright (C) 2008, http://www.dabeaz.com

%ofeature Commentary

® %feature is closely related in concept to
Python decorators and Aspect Oriented Prog.

® You're basically "decorating” declarations with
additional information

® This information is used by the low-level code
generators to guide wrapper creation.

[-134

Copyright (C) 2008, http://www.dabeaz.com

Discussion

® If you understand that Swig works by
decorating the parse tree, you start to see how
interfaces get put together

® Typical Swig interface

gmodule sample

%{

#include "sample.h"
%}

¢feature(...) bar;
tfeature(...) foo;

$include "sample.h"

Preamble

Decorations

A header

Copyright (C) 2008, http://www.dabeaz.com [-135
Difficulties

® There are too many features! (dozens)
$immutable $feature("immutable")
gnodefault ¢feature("nodefault")
gnodefaultctor $feature("nodefaultctor")
gnodefaultdtor $feature("nodefaultdtor")
%copyctor $feature("copyctor")
%exception ¢feature("except")
%allowexcept $feature("allowexcept")
%exceptionvar $feature("exceptvar")
gcatches $feature("catches")
%exceptionclass $feature("exceptionclass")
gnewobject $feature("new")
¢delobject ¢feature("del")
¢refobject $feature("ref")
gunrefobject $feature("unref")
%callback $feature("callback")
¢fastdispatch ¢feature("fastdispatch")
¢director $feature("director")
gcontract $feature("contract")

[-136

Copyright (C) 2008, http://www.dabeaz.com

Difficulties

® The features are not randomly implemented
® There to solve some sort of customization

® Almost always related to underlying semantics
of the code being wrapped

® However, you need to look at a manual to
know all of the available options

Copyright (C) 2008, http://www.dabeaz.com I 'I 37

Example

® Contract checking (a little known feature)

gcontract sqrt(double x) {
require:
x >= 0;

}

double sqgrt(double);

® Specific language backends might define even
more exotic features

Copyright (C) 2008, http://www.dabeaz.com I 'I 38

Part /7

Code Generation

Copyright (C) 2008, http://www.dabeaz.co

[-139

Code Generation

® The last phase of Swig processing is the
generation of low-level wrapper code

® There are four basic building blocks
® Inserting literal code into the output
® Creating a wrapper function
® [nstalling a constant value

® Wrapping a global variable

Copyright (C) 2008, http://www.dabeaz.com

[-140

Swig Output

® Swig creates two different output files

shell % swig -python sample.i
shell % 1s

sample.i sample wrap.c sample.py
shell %

® The _wrap.cfile is C code that must be
compiled in a shared library

® The .py file is Python support code that serves
as a front-end to the low-level C module

[-141

Copyright (C) 2008, http://www.dabeaz.co

Output Code Sections

® Internally, there are 5 named file "targets”

module_wrap.c module.py
"runtime” "python"
"header"
"wrapper"
"init"

[-142

Copyright (C) 2008, http://www.dabeaz.com

%insert(section)

® [nserts literal code into any named file section

$insert ("runtime") %{
static void helloworld() { printf("Hello World\n"); }
%}

$insert ("python") %{
Print a welcome message
print "Welcome to my Swig module"

3}
® Note:These are usually aliased by macros

gruntime %{ ... %}

$¢header %{ ... %} (Same as bare %{ ... %})
gwrapper %{ ... %}

$init { ... %}

[-143

Copyright (C) 2008, http://www.dabeaz.com

Wrapper Functions

® The most elementary form of a Python
extension function is the following:

PyObject *w apper (PyObject *self, PyObject *args) {

}

® Swig wraps almost all C/C++ declarations with
simple Python extension functions like this

|-144

Copyright (C) 2008, http://www.dabeaz.com

Wrapper Creation

module_wrap.c $module sample

") " int foo(int x, int y);

runtime

"header" Create a wrapper

" " PyObject *

wrapper _wrap foo(PyObject *self, PyObject *args)
—

}
"init"

Copyright (C) 2008, http://www.dabeaz.com I 'I 45
\"A" Initializati
module_wrap.c $module sample
") " int foo(int x, int y);
runtime g
"header"
Installation of the
"wrapper")
. wrapper into the
—"rap_too module table
stat;;e'"‘ yMethodDef SwigMethods[] = {
"init" — {{ "foo"; _wrap foo, METH VARARGS, NULL}
}i
[-146

Copyright (C) 2008, http://www.dabeaz.com

Python Wrapper

module_wrap.c $module sample
l cc int foo(int x, int y);
_module.pyd

.foo : _wrap foo +

module.py

import _module

Make a reference

to the wrapper in
the Python file

foo = _module.foo

[-147

Copyright (C) 2008, http://www.dabeaz.com

Wrapper Functions

® Swig reduces all declarations to low-level
wrappers

® Example :A C structure

gmodule sample

struct Spam {
int a, b;

}i

[-148

Copyright (C) 2008, http://www.dabeaz.com

Reduction to Functions

int a,

struct Spam {

b;

}i

l Reduction to functions

Spam *new Spam() { return (Spam *) malloc(sizeof(Spam));
void delete Spam(Spam *s) { free(s); }

int Spam_a_get(Spam *s) { return s->a; }

void Spam a set(Spam *s, int a) { s->a = a; }

int Spam b get(Spam *s) { return s->b; }

void Spam b set(Spam *s, int b) { s->b = b; }

}

This is a collection of "accessor"” functions that
provide access to the implementation of the structure

Copyright (C) 2008, http://www.dabeaz.com

[-149

Wrapper Generation

void

int
void
int
void

Spam_a_get(Spam
Spam_a_set(Spam
Spam_b get(Spam
Spam_b set(Spam

*s)
*s,
*s)
*s,

{ return
int a) {
{ return
int b) {

s=>aj;

s->a =

s->b;

s->b =

Spam *new Spam() { return (Spam *) malloc(sizeof(Spam)); }
delete_Spam(Spam *s) { free(s); }

}
a; }
}
b; }

Wrapper code

PyObject
PyObject
PyObject
PyObject
PyObject
PyObject

* wrap new_ Spam(PyObject *self, PyObject *args);

* wrap delete Spam(PyObject *self, PyObject *args);

* wrap Spam a get(PyObject
* wrap Spam a_ set(PyObject
* wrap Spam b get(PyObject
* wrap Spam b set(PyObject

*self,
*self,
*self,
*self,

PyObject
PyObject
PyObject
PyObject

*args);
*args);
*args);
*args);

Copyright (C) 2008, http://www.dabeaz.com

[-150

Proxy Generation

_module.pyd
.new_Spam: _wWrap_new_Spam
.delete_Spam: _wrap delete_Spam
.Spam_a get: wrap Spam a get
.Spam_a_set: wrap Spam a set
.Spam_b get: _wrap Spam b get
.Spam_b set: wrap Spam b set
module.py v
class Spam(object):
def init (self):
self.this = module.new_ Spam()
a = property(_module.Spam a get, module.Spam a_ set)
b = property(_module.Spam b get, module.Spam b set)

Copyright (C) 2008, http://www.dabeaz.com

[-151

® There are a lot of low-level details I'm omitting

Commentary

® A critical point : Swig never wraps C/C++
objects with Python types defined in C.

® Obijects are always wrapped by proxies
implemented partly in Python as shown

Copyright (C) 2008, http://www.dabeaz.com

[-152

Part 8

Customizing Code Generation with Typemaps

Copyright (C) 2008, http://www.dabeaz.com

[-153

Typemaps

® A customization feature applied to specific
datatypes that appear in the input

® Background: The primary role of a wrapper

function is to convert data between Python/C.

® Typemaps allow you to hook into that
conversion process and customize it

® Without a doubt :This is the most mind-
boggling part of Swig.

Copyright (C) 2008, http://www.dabeaz.com

[-154

Introduction

® Consider this C function and a hand-written
Python wrapper (from intro)

/* A simple C function */
double square(double x) {
return x*x;

}

PyObject *py square(PyObject *self, PyObject *args) {
double x, result;
if (!PyArg ParseTuple(self,"d",&x)) {
return NULL;
}
result = square(x);
return Py Buildvalue("d",result);

Copyright (C) 2008, http://www.dabeaz.com I 'I 55

Introduction

® In the wrapper, there is a mapping from types
in the declaration to conversion code

/* A simple C function */
double square(double x) {
eturn x*x;

}
OUtPUt
PyObject y_square(PyObJect *self, PyObject *args) {
double result;
if (!PyArParseTuple(self,"d",&x)) {
return
}
result = square(x)W\
return Py Buildvalue("d",result);
}

Copyright (C) 2008, http://www.dabeaz.com I 'I 56

Jotypemap directive

® Allows complete customization of what
happens during type conversion

$typemap(in) double {
// Custom input conversion code

}
$typemap (out) double {

// Custom output conversion code

}

/* The C function to wrap */
double square(double x);

Copyright (C) 2008, http://www.dabeaz.com

[-157

Sample Wrapper Code

PyObject * wrap square(PyObject *self, PyObject *args) {
PyObject *resultobj = 0;
double argl ;
double result;
PyObject * obj0 = 0 ;

if (!PyArg ParseTuple(args, (char *)"O:square",&obj0)) SWIG fail;

{

// Custom input conversion code

}

result = (double)square(argl);

{

// Custom output conversion code

}

return resultobj;
fail:

return NULL;
}

Copyright (C) 2008, http://www.dabeaz.com

[-158

7otypemap variables

® A typemap is just a fragment of C code

® |n that fragment, there are special substitutions

s1 - The value in C

$input - The Python input value

Sresult - The Python result value
® Example:

$typemap(in) double {
$1 = PyFloat AsDouble($input);
}
%typemap(out) double {
$result = PyFloat FromDouble($1);
}

Copyright (C) 2008, http://www.dabeaz.com

[-159

Sample Wrapper Code

PyObject * wrap square(PyObject *self, PyObject *args) {
PyObject *resultobj = 0;
double argl ;
double result;
PyObject * obj0 = 0 ;

if (!PyArg ParseTuple(args, (char *)"O:square",&obj0)) SWIG fail;

{ argl = PyFloat_AsDouble(objo0);
iesult = (double)square(argl);
¢ resultobj = PyFloat_FromDouble(result);
ieturn resultobj;
fail:

return NULL;
}

Copyright (C) 2008, http://www.dabeaz.com

[-160

Jtypemap matching

® A typemap binds to both to types and names

® Can use that fact to pinpoint types

$typemap(in) double nonnegative {
$1 = PyFloat AsDouble(S$input);

if ($1 < 0) {
PyErr SetString(PyExc ValueError, "'must be >=0");
return NULL;

double sqgrt(double nonnegative);

[-161

Copyright (C) 2008, http://www.dabeaz.com

Jtypemap matching

® Typemaps can also bind to typedef names

typedef double nndouble;
$typemap(in) nndouble {
$1 = PyFloat AsDouble(S$input);

if ($1 < 0) {
PyErr SetString(PyExc ValueError, "must
return NULL;

e >=0");

double sqgrt(nndouble Xx);

® The typemap only applies to types that exactly
match that name

[-162

Copyright (C) 2008, http://www.dabeaz.com

Interlude

® Normally, you don't have to define typemaps

® Swig already knows how to convert primitive
datatypes, handle C/C++ pointers, etc.

® Typemaps only come into play if you want to
make an extension module do something other
than the default behavior

[-163

Copyright (C) 2008, http://www.dabeaz.com

Example: Multiple Outputs

® Wrapping a function with multiple outputs

double do sgrt(double x, int *status) {
double result;
if (x >= 0) {
result = sqgrt(x);
*status = 1;
} else {
result = 0;
*status = 0;
}

return result;

}
® Here, the function returns a result and a status

® Suppose you wanted both returned as a tuple!?

I-164

Copyright (C) 2008, http://www.dabeaz.com

Example: Multiple Outputs

® Typemaps to do this

$typemap(in,numinputs=0) int *status(int stat value) {
$1 = &stat value;
}

$typemap(argout) int *status {
PyObject *newobj = Py Buildvalue(("O",i),$result,*$1);
Py DECREF($result);
$result = newobj;

}

double do sqgrt(double x, int *status);

® Now, let's look at what happens

Copyright (C) 2008, http://www.dabeaz.com I 'I 65

Example: Multiple Outputs

$typemap(in,numinputs=0) int *status(int stat value) {

$1 = &stat_value;
}

PyObject * wrap do_sqgrt(self, PyObject *args) {
PyObject *resultobj = 0;
double argl ;
int *arg2 = (int *) O ;
double result;
int stat_value2

Variable to hold value

|| ~e

PyObject * objo0 0 ;
{

arg2 = &stat_value2; «<—— Set pointer to temporary variable
1f (!PyArg ParseTuple(args, (char *)"O:do sqrt",&obj0)) SWIG fail;
{ argl = PyFloat AsDouble(objo0);
}

Copyright (C) 2008, http://www.dabeaz.com I 'I 66

$typemap(argout) int *status {

Py DECREF ($result);
Sresult = newobj;

PyObject *newobj = Py BuildvValue("(O,i)",$result,*$1l);

PyObject * wrap do sqgrt(self, PyObject *args) {

result = (double)do_sqrt(argl,arg2);
{

resultobj = PyFloat FromDouble(result);
}
{

Py DECREF (resultobj);
resultobj = newobj;
}

return resultobj;

Copyright (C) 2008, http://www.dabeaz.com

PyObject *newobj = Py Buildvalue("(0,i)",resultobj,*arg2);

Example: Multiple Outputs

[-167

® Example use:

>>> import sample

>>> sample.do_sqrt (4)
(2.0, 1)

>>> sample.do_sqrt(-4)
(0.0, 0)

>>>

Copyright (C) 2008, http://www.dabeaz.com

Example: Multiple Outputs

I-168

Commentary

® Writing typemap code is extremely non-trivial
® Requires knowledge of both Swig and Python

® May have to get into blood and guts of
memory management (reference counting)

® Code that you write is really ugly

® However, you need to realize that people have
already written a lot of this code

Copyright (C) 2008, http://www.dabeaz.co

[-169

Typemap Libraries

® Swig comes with libraries of typemaps

® Use the %apply directive to use them

$include "typemaps.i"
$apply int *OUTPUT { int *status };

double do sqrt(double x, int *status);

® Someone already figured out that output
argument problem. We're using that code.

® %apply applies a set of typemaps to a new type

Copyright (C) 2008, http://www.dabeaz.com

[-170

More Commentary

® People like to complain about typemaps

® Yet, it is not necessary to manually write
typemap code in most situations

® If you are new to Swig and you are trying to
write typemaps, you need to stop what you're
doing and go re-read the documentation.

® Always intended as an advanced feature

[-171

Copyright (C) 2008, http://www.dabeaz.co

Cautions

® The default set of Python typemaps is of
considerable complexity (even | can't quite
wrap my brain around all of it right now)

® Considerable effort concerning memory
management, error handling, threads, etc.

® UTL (Universal Typemap Library). An effort to
unify core typemaps across Python/Ruby/Tcl
and other languages (heavy use of macros)

[-172

Copyright (C) 2008, http://www.dabeaz.co

Part 9

Where to go from here!?

[-173

Copyright (C) 2008, http://www.dabeaz.com

Wrap-up

® Swig is built from a few basic components
® Preprocessor - For defining macros

® Parser - Grabs the an entire parse tree

® Features - Decoration of the parse tree

® Typemaps - Code fragments used in wrappers

[-174

Copyright (C) 2008, http://www.dabeaz.com

Using Swig

® The best way to think of Swig is as a code
generator based on pattern matching

® You're going to define various rules/
customizations for specific declarations and
datatypes

® Those rules then get applied across a header file

[-175

Copyright (C) 2008, http://www.dabeaz.co

Complaints

® Although each part of Swig is conceptually
simple, all of the features we've described can
interact with each other

® Can create interfaces that are a mind-boggling
combination of macros/features/typemaps

® Swig is so flexible internally, that contributers
have added a vast array of customizations

® | don't even fully understand all of it!

[-176

Copyright (C) 2008, http://www.dabeaz.com

Start Simple

® To get the most out of Swig, it's best to start
small and build over time

® Most of the really exotic features are not
needed to get going

® Although Swig is complicated, | think the power
of the implementation grows on you

® There are some really sick things you can do...

[-177

Copyright (C) 2008, http://www.dabeaz.com

More Information

® http://www.swig.org
® There is extensive documentation

® Past papers describing Swig and how it works

[-178

Copyright (C) 2008, http://www.dabeaz.com

